boltzmann entropy
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 25)

H-INDEX

10
(FIVE YEARS 3)

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1616
Author(s):  
Samuel A. Cushman

Several methods have been recently proposed to calculate configurational entropy, based on Boltzmann entropy. Some of these methods appear to be fully thermodynamically consistent in their application to landscape patch mosaics, but none have been shown to be fully generalizable to all kinds of landscape patterns, such as point patterns, surfaces, and patch mosaics. The goal of this paper is to evaluate if the direct application of the Boltzmann relation is fully generalizable to surfaces, point patterns, and landscape mosaics. I simulated surfaces and point patterns with a fractal neutral model to control their degree of aggregation. I used spatial permutation analysis to produce distributions of microstates and fit functions to predict the distributions of microstates and the shape of the entropy function. The results confirmed that the direct application of the Boltzmann relation is generalizable across surfaces, point patterns, and landscape mosaics, providing a useful general approach to calculating landscape entropy.


Author(s):  
Gabrielle Oliveira Almeida ◽  
Maycon Júnior Cruz Silva ◽  
Andre Mota
Keyword(s):  

2021 ◽  
pp. 2150111
Author(s):  
Fei-Quan Tu ◽  
Bin Sun ◽  
Meng Wan ◽  
Qi-Hong Huang

Entropy is a key concept widely used in physics and other fields. At the same time, the meaning of entropy with different names and the relationship among them are confusing. In this paper, we discuss the relationship among the Clausius entropy, Boltzmann entropy and information entropy and further show that the three kinds of entropy are equivalent to each other to some extent. Moreover, we point out that the evolution of the universe is a process of entropy increment and life originates from the original low entropy of the universe. Finally, we discuss the evolution of the entire universe composed of the cosmological horizon and the space surrounded by it and interpret the entropy as a measure of information of all microstates corresponding to a certain macrostate. Under this explanation, the thermodynamic entropy and information entropy are unified and we can conclude that the sum of the entropy of horizon and the entropy of matter in the space surrounded by the horizon does not decrease with time if the second law of thermodynamics holds for the entire universe.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 307
Author(s):  
Dimitrios Nikolopoulos ◽  
Aftab Alam ◽  
Ermioni Petraki ◽  
Michail Papoutsidakis ◽  
Panayiotis Yannakopoulos ◽  
...  

This paper utilises statistical and entropy methods for the investigation of a 17-year PM10 time series recorded from five stations in Athens, Greece, in order to delineate existing stochastic and self-organisation trends. Stochastic patterns are analysed via lumping and sliding, in windows of various lengths. Decreasing trends are found between Windows 1 and 3500–4000, for all stations. Self-organisation is studied through Boltzmann and Tsallis entropy via sliding and symbolic dynamics in selected parts. Several values are below −2 (Boltzmann entropy) and 1.18 (Tsallis entropy) over the Boltzmann constant. A published method is utilised to locate areas for which the PM10 system is out of stochastic behaviour and, simultaneously, exhibits critical self-organised tendencies. Sixty-six two-month windows are found for various dates. From these, nine are common to at least three different stations. Combining previous publications, two areas are non-stochastic and exhibit, simultaneously, fractal, long-memory and self-organisation patterns through a combination of 15 different fractal and SOC analysis techniques. In these areas, block-entropy (range 0.650–2.924) is significantly lower compared to the remaining areas of non-stochastic but self-organisation trends. It is the first time to utilise entropy analysis for PM10 series and, importantly, in combination with results from previously published fractal methods.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
K. Mejrhit ◽  
R. Hajji

AbstractIn this letter, using the non-extensive entropy of Tsallis, we study some properties of the Schwarzschild black holes (BHs), based on the loop quantum gravity (LQG), some novel characteristics and results of the Schwarzschild BH can be obtained in Mejrhit and Ennadifi (Phys Lett B 794:45–49, 2019). Here we find that these findings are strikingly identical to ones obtained by Hawking and Page in anti-de Sitter space within the original of the Boltzmann entropy formula. By using the semi-classical estimate analysis on the energy at this minimum $$M_{min}$$ M min , an approximate relationship between the q and $$\gamma $$ γ parameters of BHs can be found, ($$q\approx \frac{\sqrt{3}\gamma }{\pi \ln 2}+1$$ q ≈ 3 γ π ln 2 + 1 ), which is remarkable approaching to q-parameters of cosmic ray spectra and quarks coalescing to hadrons in high energy.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Leonardo Santilli ◽  
Richard J. Szabo ◽  
Miguel Tierz

Abstract We derive the $$ T\overline{T} $$ T T ¯ -perturbed version of two-dimensional q-deformed Yang-Mills theory on an arbitrary Riemann surface by coupling the unperturbed theory in the first order formalism to Jackiw-Teitelboim gravity. We show that the $$ T\overline{T} $$ T T ¯ -deformation results in a breakdown of the connection with a Chern-Simons theory on a Seifert manifold, and of the large N factorization into chiral and anti-chiral sectors. For the U(N) gauge theory on the sphere, we show that the large N phase transition persists, and that it is of third order and induced by instantons. The effect of the $$ T\overline{T} $$ T T ¯ -deformation is to decrease the critical value of the ’t Hooft coupling, and also to extend the class of line bundles for which the phase transition occurs. The same results are shown to hold for (q, t)-deformed Yang-Mills theory. We also explicitly evaluate the entanglement entropy in the large N limit of Yang-Mills theory, showing that the $$ T\overline{T} $$ T T ¯ -deformation decreases the contribution of the Boltzmann entropy.


Sign in / Sign up

Export Citation Format

Share Document