scholarly journals Loop quantum gravity simplicity constraint as surface defect in complex Chern-Simons theory

2017 ◽  
Vol 95 (10) ◽  
Author(s):  
Muxin Han ◽  
Zichang Huang
2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Abhishek Majhi

Considering the possibility of ‘renormalization’ of the gravitational constant on the horizon, leading to a dependence on the level of the associated Chern-Simons theory, a rescaled area spectrum is proposed for the nonrotating black hole horizon in loop quantum gravity. The statistical mechanical calculation leading to the entropy provides a unique choice of the rescaling function for which the Bekenstein-Hawking area law is yielded without the need to choose the Barbero-Immirzi parameter (γ). γ is determined, rather than being chosen, by studying the limit in which the ‘renormalized’ gravitational constant on the horizon asymptotically approaches the ‘bare’ value. The possible physical dynamics behind the ‘renormalization’ is discussed.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Osamu Fukushima ◽  
Jun-ichi Sakamoto ◽  
Kentaroh Yoshida

Abstract We derive the Faddeev-Reshetikhin (FR) model from a four-dimensional Chern-Simons theory with two order surface defects by following the work by Costello and Yamazaki [arXiv:1908.02289]. Then we present a trigonometric deformation of the FR model by employing a boundary condition with an R-operator of Drinfeld-Jimbo type. This is a generalization of the work by Delduc, Lacroix, Magro and Vicedo [arXiv:1909.13824] from the disorder surface defect case to the order one.


2015 ◽  
Vol 30 (35) ◽  
pp. 1530067
Author(s):  
Louis H. Kauffman

This paper is an exposition of the relationship between Witten’s Chern–Simons functional integral and the theory of Vassiliev invariants of knots and links in three-dimensional space. We conceptualize the functional integral in terms of equivalence classes of functionals of gauge fields and we do not use measure theory. This approach makes it possible to discuss the mathematics intrinsic to the functional integral rigorously and without functional integration. Applications to loop quantum gravity are discussed.


2014 ◽  
Vol 90 (8) ◽  
Author(s):  
R. Bonezzi ◽  
O. Corradini ◽  
A. Waldron

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
K. Eder ◽  
H. Sahlmann

Abstract In this article, the Cartan geometric approach toward (extended) supergravity in the presence of boundaries will be discussed. In particular, based on new developments in this field, we will derive the Holst variant of the MacDowell-Mansouri action for $$ \mathcal{N} $$ N = 1 and $$ \mathcal{N} $$ N = 2 pure AdS supergravity in D = 4 for arbitrary Barbero-Immirzi parameters. This action turns out to play a crucial role in context of boundaries in the framework of supergravity if one imposes supersymmetry invariance at the boundary. For the $$ \mathcal{N} $$ N = 2 case, it follows that this amounts to the introduction of a θ-topological term to the Yang-Mills sector which explicitly depends on the Barbero-Immirzi parameter. This shows the close connection between this parameter and the θ-ambiguity of gauge theory.We will also discuss the chiral limit of the theory, which turns out to possess some very special properties such as the manifest invariance of the resulting action under an enlarged gauge symmetry. Moreover, we will show that demanding supersymmetry invariance at the boundary yields a unique boundary term corresponding to a super Chern-Simons theory with OSp($$ \mathcal{N} $$ N |2) gauge group. In this context, we will also derive boundary conditions that couple boundary and bulk degrees of freedom and show equivalence to the results found in the D’Auria-Fré approach in context of the non-chiral theory. These results provide a step towards of quantum description of supersymmetric black holes in the framework of loop quantum gravity.


Sign in / Sign up

Export Citation Format

Share Document