scholarly journals Color confinement at the boundary of the conformally compactified AdS5

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
M. Kirchbach ◽  
T. Popov ◽  
J. A. Vallejo

Abstract The topology of closed manifolds forces interacting charges to appear in pairs. We take advantage of this property in the setting of the conformal boundary of AdS5 spacetime, topologically equivalent to the closed manifold S1× S3, by considering the coupling of two massless opposite charges on it. Taking the interaction potential as the analog of Coulomb interaction (derived from a fundamental solution of the S3 Laplace-Beltrami operator), a conformal S1× S3 metric deformation is proposed, such that free motion on the deformed metric is equivalent to motion on the round metric in the presence of the interaction potential. We give explicit expressions for the generators of the conformal algebra in the representation induced by the metric deformation.By identifying the charge as the color degree of freedom in QCD, and the two charges system as a quark-anti-quark system, we argue that the associated conformal wave operator equation could provide a realistic quantum mechanical description of the simplest QCD system, the mesons.Finally, we discuss the possibility of employing the compactification radius, R, as an- other scale along ΛQCD, by means of which, upon reparametrizing Q2c2 as (Q2c2+ħ2c2/R2), a perturbative treatment of processes in the infrared could be approached.

2016 ◽  
pp. 4039-4042
Author(s):  
Viliam Malcher

The interpretation problems of quantum theory are considered. In the formalism of quantum theory the possible states of a system are described by a state vector. The state vector, which will be represented as |ψ> in Dirac notation, is the most general form of the quantum mechanical description. The central problem of the interpretation of quantum theory is to explain the physical significance of the |ψ>. In this paper we have shown that one of the best way to make of interpretation of wave function is to take the wave function as an operator.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zbigniew Dutkiewicz

AbstractDrug design is an expensive and time-consuming process. Any method that allows reducing the time the costs of the drug development project can have great practical value for the pharmaceutical industry. In structure-based drug design, affinity prediction methods are of great importance. The majority of methods used to predict binding free energy in protein-ligand complexes use molecular mechanics methods. However, many limitations of these methods in describing interactions exist. An attempt to go beyond these limits is the application of quantum-mechanical description for all or only part of the analyzed system. However, the extensive use of quantum mechanical (QM) approaches in drug discovery is still a demanding challenge. This chapter briefly reviews selected methods used to calculate protein-ligand binding affinity applied in virtual screening (VS), rescoring of docked poses, and lead optimization stage, including QM methods based on molecular simulations.


2006 ◽  
Vol 106 (9) ◽  
pp. 2129-2144 ◽  
Author(s):  
Luiz Antônio S. Costa ◽  
Trevor W. Hambley ◽  
Willian R. Rocha ◽  
Wagner B. De Almeida ◽  
Hélio F. Dos Santos

2015 ◽  
Vol 6 ◽  
pp. 1946-1956 ◽  
Author(s):  
Nikolay V Klenov ◽  
Alexey V Kuznetsov ◽  
Igor I Soloviev ◽  
Sergey V Bakurskiy ◽  
Olga V Tikhonova

We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior.


2007 ◽  
Vol 51 (2) ◽  
pp. 367-375 ◽  
Author(s):  
A. Westphal ◽  
H. Abele ◽  
S. Baeßler ◽  
V.V. Nesvizhevsky ◽  
K.V. Protasov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document