magnetic reversal
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 27)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Amandine Chambord

<p>Quantifying past motions of tectonic plates in the southwest Pacific is important because the Pacific-Antarctic ridge is the only non-destructive boundary between the Pacific plate and other major plates. However, formation of sea-ice near Antarctica impairs the collection of magnetic anomaly data that are necessary to calculate plate rotations. A detailed analysis of all ship-track magnetic data available in the southwest Pacific (61 cruises, 153 profiles, including several cruises collected after 1995) is presented here. Four different sources of uncertainty are quantified: (1) confidence of magnetic anomaly identification, (2) magnetic reversal location picking precision, (3) ship navigation precision, and (4) magnetic data quality. Finite plate rotations are calculated for the southwest Pacific (42.5 to 79 Ma) using the resulting magnetic anomaly database (1528 magnetic reversal data). Finite rotations were calculated using the Hellinger criterion, or by a new method presented here that assumes orthogonality between fracture zones and ridge segments. The new method requires less parameters and is hence able better estimate rotations in cases with an uneven distribution of sparse magnetic data. Rotations and formal uncertainties are calculated for thirty-one chrons (c20y to c33o). They confirm the existence of a three plate system (Pacific, Marie Byrd Land, Bellingshausen) in the southwest Pacific from before c31o (68.7 Ma) until c28y (62.5 Ma). After c28y, the Bellingshausen and Marie Byrd Land plates moved as a single plate.</p>


2021 ◽  
Author(s):  
◽  
Amandine Chambord

<p>Quantifying past motions of tectonic plates in the southwest Pacific is important because the Pacific-Antarctic ridge is the only non-destructive boundary between the Pacific plate and other major plates. However, formation of sea-ice near Antarctica impairs the collection of magnetic anomaly data that are necessary to calculate plate rotations. A detailed analysis of all ship-track magnetic data available in the southwest Pacific (61 cruises, 153 profiles, including several cruises collected after 1995) is presented here. Four different sources of uncertainty are quantified: (1) confidence of magnetic anomaly identification, (2) magnetic reversal location picking precision, (3) ship navigation precision, and (4) magnetic data quality. Finite plate rotations are calculated for the southwest Pacific (42.5 to 79 Ma) using the resulting magnetic anomaly database (1528 magnetic reversal data). Finite rotations were calculated using the Hellinger criterion, or by a new method presented here that assumes orthogonality between fracture zones and ridge segments. The new method requires less parameters and is hence able better estimate rotations in cases with an uneven distribution of sparse magnetic data. Rotations and formal uncertainties are calculated for thirty-one chrons (c20y to c33o). They confirm the existence of a three plate system (Pacific, Marie Byrd Land, Bellingshausen) in the southwest Pacific from before c31o (68.7 Ma) until c28y (62.5 Ma). After c28y, the Bellingshausen and Marie Byrd Land plates moved as a single plate.</p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2729
Author(s):  
Sofia Caspani ◽  
Suellen Moraes ◽  
David Navas ◽  
Mariana P. Proenca ◽  
Ricardo Magalhães ◽  
...  

Multi-segmented bilayered Fe/Cu nanowires have been fabricated through the electrodeposition in porous anodic alumina membranes. We have assessed, with the support of micromagnetic simulations, the dependence of fabricated nanostructures’ magnetic properties either on the number of Fe/Cu bilayers or on the length of the magnetic layers, by fixing both the nonmagnetic segment length and the wire diameter. The magnetic reversal, in the segmented Fe nanowires (NWs) with a 300 nm length, occurs through the nucleation and propagation of a vortex domain wall (V-DW) from the extremities of each segment. By increasing the number of bilayers, the coercive field progressively increases due to the small magnetostatic coupling between Fe segments, but the coercivity found in an Fe continuous nanowire is not reached, since the interactions between layers is limited by the Cu separation. On the other hand, Fe segments 30 nm in length have exhibited a vortex configuration, with around 60% of the magnetization pointing parallel to the wires' long axis, which is equivalent to an isolated Fe nanodisc. By increasing the Fe segment length, a magnetic reversal occurred through the nucleation and propagation of a V-DW from the extremities of each segment, similar to what happens in a long cylindrical Fe nanowire. The particular case of the Fe/Cu bilayered nanowires with Fe segments 20 nm in length revealed a magnetization oriented in opposite directions, forming a synthetic antiferromagnetic system with coercivity and remanence values close to zero.


2021 ◽  
Author(s):  
Anjan Kumar Jena ◽  
Sameer Kumar Mallik ◽  
Mousam Charan Sahu ◽  
Sandhyarani Sahoo ◽  
Ajit Kumar Sahoo ◽  
...  

Abstract Strain-mediated magnetism in 2D materials and dilute magnetic semiconductors hold multi-functional applications for future nano-electronics. Herein, First principles calculations are employed to study the influence of biaxial strain on the magnetic properties of Co-doped monolayer W S2. The non-magnetic W S2 shows ferromagnetic signature upon Co doping due to spin polarization, which is further improved at low compressive (-2 %) and tensile (+2 %) strains. From the PDOS and spin density analysis, the opposite magnetic ordering is found to be favourable under the application of compressive and tensile strains. The double exchange interaction and p-d hybridization mechanisms make Co-doped W S2 a potential host for magnetism. More importantly, the competition between exchange and crystal field splittings, i.e. (∆ ex > ∆ c f s), of the Co-atom play pivotal roles in deciding the values of the magnetic moments under applied strain. Micromagnetic simulation reveals, the ferromagnetic behavior calculated from DFT exhibits low-field magnetic reversal (190 Oe). Moreover, the spins of Co-doped W S2 are slightly tilted from the easy axis orientations showing slanted ferromagnetic hysteresis loop. The ferromagnetic nature of Co-doped W S2 suppresses beyond ±2 % strain, which is reflected in terms of decrease in the coercivity in the micromagnetic simulation. The understanding of low-field magnetic reversal and spin orientations in Co-doped W S2 may pave the way for next-generation spintronics and straintronics applications.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3868
Author(s):  
Chao Yang ◽  
Yuya Kita ◽  
Zenglu Song ◽  
Yasushi Takemura

The magnetic structure of Wiegand wires cannot be evaluated using conventional magnetization hysteresis curves. We analyzed the magnetization reversal of a Wiegand wire by measuring the first-order reversal curves (FORCs). A FeCoV Wiegand wire with a magnetically soft outer layer and a hard magnetic core was used in this study. The magnetization reversal of the soft and hard regions in the wire was identified in the FORC diagrams. The magnetization reversal of the dominantly irreversible process of the soft layer and the magnetic intermediate region between the soft and hard regions was clarified.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariana P. Proenca ◽  
Javier Rial ◽  
Joao P. Araujo ◽  
Celia T. Sousa

AbstractCylindrical magnetic nanowires are key elements of fast-recording and high-density 3D-storage devices. The accurate tuning of the magnetization processes at the nanoscale is crucial for the development of future nano-devices. Here, we analyzed the magnetization of Ni nanostructures with 15–100 nm in diameter and 12–230 nm in length and compared our results with experimental data for periodic arrays. Our modelling led to a phase diagram of the reversal modes where the presence of a critical diameter (d ≈ 30 nm) triggered the type of domain wall (DW) formed (transverse or vortex); while a critical length (L ≈ 100 nm) determined the number of DWs nucleated. Moreover, vortex-DWs originated from 3D skyrmion tubes, reported as one of the best configurations for storage devices. By increasing the diameter and aspect-ratio of nanowires with L > 100 nm, three reversal modes were observed: simultaneous propagation of two vortex-DWs; propagation of one vortex-DW; or spiral rotation of both DWs through “corkscrew” mechanism. Only for very low aspect-ratios (nanodisks), no skyrmion tubes were observed and reversal occurred by spiral rotation of one vortex-DW. The broad range of nanostructures studied allowed the creation of a complete phase diagram, highly important for future choice of nanoscaled dimensions in the development of novel nano-devices.


Author(s):  
Kexuan Zhang ◽  
Kirill Zhernenkov ◽  
Thomas Saerbeck ◽  
Artur Glavic ◽  
Lili Qu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 5 (3) ◽  
Author(s):  
N. Teichert ◽  
G. Atcheson ◽  
K. Siewierska ◽  
M. N. Sanz-Ortiz ◽  
M. Venkatesan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document