scholarly journals Complexity measures in QFT and constrained geometric actions

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Pablo Bueno ◽  
Javier M. Magán ◽  
C. S. Shahbazi

Abstract We study the conditions under which, given a generic quantum system, complexity metrics provide actual lower bounds to the circuit complexity associated to a set of quantum gates. Inhomogeneous cost functions — many examples of which have been recently proposed in the literature — are ruled out by our analysis. Such measures are shown to be unrelated to circuit complexity in general and to produce severe violations of Lloyd’s bound in simple situations. Among the metrics which do provide lower bounds, the idea is to select those which produce the tightest possible ones. This establishes a hierarchy of cost functions and considerably reduces the list of candidate complexity measures. In particular, the criterion suggests a canonical way of dealing with penalties, consisting in assigning infinite costs to directions not belonging to the gate set. We discuss how this can be implemented through the use of Lagrange multipliers. We argue that one of the surviving cost functions defines a particularly canonical notion in the sense that: i) it straightforwardly follows from the standard Hermitian metric in Hilbert space; ii) its associated complexity functional is closely related to Kirillov’s coadjoint orbit action, providing an explicit realization of the “complexity equals action” idea; iii) it arises from a Hamilton-Jacobi analysis of the “quantum action” describing quantum dynamics in the phase space canonically associated to every Hilbert space. Finally, we explain how these structures provide a natural framework for characterizing chaos in classical and quantum systems on an equal footing, find the minimal geodesic connecting two nearby trajectories, and describe how complexity measures are sensitive to Lyapunov exponents.

2021 ◽  
Vol 13 (1) ◽  
pp. 1-25
Author(s):  
Dmitry Itsykson ◽  
Alexander Okhotin ◽  
Vsevolod Oparin

The partial string avoidability problem is stated as follows: given a finite set of strings with possible “holes” (wildcard symbols), determine whether there exists a two-sided infinite string containing no substrings from this set, assuming that a hole matches every symbol. The problem is known to be NP-hard and in PSPACE, and this article establishes its PSPACE-completeness. Next, string avoidability over the binary alphabet is interpreted as a version of conjunctive normal form satisfiability problem, where each clause has infinitely many shifted variants. Non-satisfiability of these formulas can be proved using variants of classical propositional proof systems, augmented with derivation rules for shifting proof lines (such as clauses, inequalities, polynomials, etc.). First, it is proved that there is a particular formula that has a short refutation in Resolution with a shift rule but requires classical proofs of exponential size. At the same time, it is shown that exponential lower bounds for classical proof systems can be translated for their shifted versions. Finally, it is shown that superpolynomial lower bounds on the size of shifted proofs would separate NP from PSPACE; a connection to lower bounds on circuit complexity is also established.


2019 ◽  
Vol 74 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe propose that space-time results from collapse of the wave function of macroscopic objects, in quantum dynamics. We first argue that there ought to exist a formulation of quantum theory which does not refer to classical time. We then propose such a formulation by invoking an operator Minkowski space-time on the Hilbert space. We suggest relativistic spontaneous localisation as the mechanism for recovering classical space-time from the underlying theory. Quantum interference in time could be one possible signature for operator time, and in fact may have been already observed in the laboratory, on attosecond time scales. A possible prediction of our work seems to be that interference in time will not be seen for ‘time slit’ separations significantly larger than 100 attosecond, if the ideas of operator time and relativistic spontaneous localisation are correct.


Author(s):  
C. M. Sánchez ◽  
P. R. Levstein ◽  
L. Buljubasich ◽  
H. M. Pastawski ◽  
A. K. Chattah

In this work, we overview time-reversal nuclear magnetic resonance (NMR) experiments in many-spin systems evolving under the dipolar Hamiltonian. The Loschmidt echo (LE) in NMR is the signal of excitations which, after evolving with a forward Hamiltonian, is recovered by means of a backward evolution. The presence of non-diagonal terms in the non-equilibrium density matrix of the many-body state is directly monitored experimentally by encoding the multiple quantum coherences. This enables a spin counting procedure, giving information on the spreading of an excitation through the Hilbert space and the formation of clusters of correlated spins. Two samples representing different spin systems with coupled networks were used in the experiments. Protons in polycrystalline ferrocene correspond to an ‘infinite’ network. By contrast, the liquid crystal N -(4-methoxybenzylidene)-4-butylaniline in the nematic mesophase represents a finite proton system with a hierarchical set of couplings. A close connection was established between the LE decay and the spin counting measurements, confirming the hypothesis that the complexity of the system is driven by the coherent dynamics.


1996 ◽  
Vol 9 (2) ◽  
pp. 263-283 ◽  
Author(s):  
J. A. Cuesta-Albertos ◽  
C. Matrán-Bea ◽  
A. Tuero-Diaz

2014 ◽  
Vol 29 (22) ◽  
pp. 1450119
Author(s):  
T. C. Adorno ◽  
J. R. Klauder

Enhanced quantization offers a different classical/quantum connection than that of canonical quantization in which ℏ > 0 throughout. This result arises when the only allowed Hilbert space vectors allowed in the quantum action functional are coherent states, which leads to the classical action functional augmented by additional terms of order ℏ. Canonical coherent states are defined by unitary transformations of a fixed, fiducial vector. While Gaussian vectors are commonly used as fiducial vectors, they cannot be used for all systems. We focus on choosing fiducial vectors for several systems including bosons, fermions and anyons.


2006 ◽  
Vol 18 (12) ◽  
pp. 2994-3008 ◽  
Author(s):  
Kei Uchizawa ◽  
Rodney Douglas ◽  
Wolfgang Maass

Circuits composed of threshold gates (McCulloch-Pitts neurons, or perceptrons) are simplified models of neural circuits with the advantage that they are theoretically more tractable than their biological counterparts. However, when such threshold circuits are designed to perform a specific computational task, they usually differ in one important respect from computations in the brain: they require very high activity. On average every second threshold gate fires (sets a 1 as output) during a computation. By contrast, the activity of neurons in the brain is much sparser, with only about 1% of neurons firing. This mismatch between threshold and neuronal circuits is due to the particular complexity measures (circuit size and circuit depth) that have been minimized in previous threshold circuit constructions. In this letter, we investigate a new complexity measure for threshold circuits, energy complexity, whose minimization yields computations with sparse activity. We prove that all computations by threshold circuits of polynomial size with entropy O(log n) can be restructured so that their energy complexity is reduced to a level near the entropy of circuit states. This entropy of circuit states is a novel circuit complexity measure, which is of interest not only in the context of threshold circuits but for circuit complexity in general. As an example of how this measure can be applied, we show that any polynomial size threshold circuit with entropy O(log n) can be simulated by a polynomial size threshold circuit of depth 3. Our results demonstrate that the structure of circuits that result from a minimization of their energy complexity is quite different from the structure that results from a minimization of previously considered complexity measures, and potentially closer to the structure of neural circuits in the nervous system. In particular, different pathways are activated in these circuits for different classes of inputs. This letter shows that such circuits with sparse activity have a surprisingly large computational power.


Sign in / Sign up

Export Citation Format

Share Document