scholarly journals A new class of de Sitter vacua in type IIB large volume compactifications

2017 ◽  
Vol 2017 (10) ◽  
Author(s):  
Diego Gallego ◽  
M. C. David Marsh ◽  
Bert Vercnocke ◽  
Timm Wrase
2016 ◽  
Vol 94 (8) ◽  
Author(s):  
Ana Achúcarro ◽  
Pablo Ortiz ◽  
Kepa Sousa

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Heliudson Bernardo ◽  
Suddhasattwa Brahma ◽  
Keshav Dasgupta ◽  
Radu Tatar

Abstract We construct purely non-perturbative anti-de Sitter vacua in string theory which, on uplifting to a de Sitter (dS) one, have a decay time many orders of magnitude smaller than those of standard constructions, such as the KKLT and LVS scenarios. By virtue of being constructed purely from non-perturbative terms, these vacua avoids certain obstructions plaguing other constructions of dS in string theory. This results in a new class of phenomenological dS vacua in string theory with novel distinctive characteristics such as having two maxima. After examining whether these uplifted dS vacua obey the TCC, we revisit some old problems of realization of dS space as a vacuum. We find that not only is it phenomenologically hard to construct TCC-compatible vacua, but also inherent temporal dependences of the degrees of freedom generically arise in such constructions, amongst other issues. This reinforces the idea that dS, if it exists in string theory, should be a Glauber-Sudarshan state and not a vacuum.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Chiara Crinò ◽  
Fernando Quevedo ◽  
Roberto Valandro

Abstract We consider de Sitter vacua realised in concrete type IIB Calabi-Yau compactifications with an anti D3-brane at the tip of a warped throat of Klebanov-Strassler type. The Kähler moduli are stabilised together with the complex structure modulus of the warped throat. The volume is exponentially large as in the large volume scenario (LVS). We analyse the conditions on the parameters of the EFT such that they are in the region of validity of our approximations, there are no runaway problems and the vacua satisfy all consistency constraints, such as tadpole cancellation. We illustrate our results with an explicit Calabi-Yau orientifold with two Kähler moduli and one antibrane on top of an O3-plane in a warped throat, that has the goldstino as its only massless state. The moduli are stabilised with gs∼ 0.2 and volume $$ \mathcal{V} $$ V ∼ 104 in string units, justifying the approximation used to derive the corresponding EFT. Although the model lacks chiral matter, it is presented as a proof of concept, chosen to be the simplest realisation of antibrane uplift.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sukruti Bansal ◽  
Silvia Nagy ◽  
Antonio Padilla ◽  
Ivonne Zavala

Abstract Recent progress in understanding de Sitter spacetime in supergravity and string theory has led to the development of a four dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua, also called de Sitter supergravity. One approach makes use of constrained (nilpotent) superfields, while an alternative one couples supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action. These two approaches have been shown to give rise to the same 4D action. A novel approach to de Sitter vacua in supergravity involves the generalisation of unimodular gravity to supergravity using a super-Stückelberg mechanism. In this paper, we make a connection between this new approach and the previous two which are in the context of nilpotent superfields and the goldstino brane. We show that upon appropriate field redefinitions, the 4D actions match up to the cubic order in the fields. This points at the possible existence of a more general framework to obtain de Sitter spacetimes from high-energy theories.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ignatios Antoniadis ◽  
Yifan Chen ◽  
George K. Leontaris

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Andreas Karch ◽  
Lisa Randall

Abstract We study Randall-Sundrum two brane setups with mismatched brane tensions. For the vacuum solutions, boundary conditions demand that the induced metric on each of the branes is either de Sitter, Anti-de Sitter, or Minkowski. For incompatible boundary conditions, the bulk metric is necessarily time-dependent. This introduces a new class of time-dependent solutions with the potential to address cosmological issues and provide alternatives to conventional inflationary (or contracting) scenarios. We take a first step in this paper toward such solutions. One important finding is that the resulting solutions can be very succinctly described in terms of an effective action involving only the induced metric on either one of the branes and the radion field. But the full geometry cannot necessarily be simply described with a single coordinate patch. We concentrate here on the time- dependent solutions but argue that supplemented with a brane stabilization mechanism one can potentially construct interesting cosmological models this way. This is true both with and without a brane stabilization mechanism.


2013 ◽  
Vol 718 (3) ◽  
pp. 1132-1136 ◽  
Author(s):  
G. DallʼAgata ◽  
G. Inverso
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
A. Sheykhi ◽  
M. H. Dehghani ◽  
M. Kord Zangeneh

We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is flat, while due to the presence of the dilaton field the asymptotic behavior of them is neither flat nor (anti-)de Sitter [(A)dS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential, and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand-canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics, and dilaton field on the thermal stability conditions. We find the solutions are thermally stable forα<1, while forα>1the solutions may encounter an unstable phase, whereαis dilaton-electromagnetic coupling constant.


Sign in / Sign up

Export Citation Format

Share Document