scholarly journals $$ \mathcal{N} $$ = 1 supersymmetric Double Field Theory and the generalized Kerr-Schild ansatz

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Eric Lescano ◽  
Jesús A. Rodríguez

Abstract We construct the $$ \mathcal{N} $$ N = 1 supersymmetric extension of the generalized Kerr-Schild ansatz in the flux formulation of Double Field Theory. We show that this ansatz is compatible with $$ \mathcal{N} $$ N = 1 supersymmetry as long as it is not written in terms of generalized null vectors. Supersymmetric consistency is obtained through a set of conditions that imply linearity of the generalized gravitino perturbation and unrestricted perturbations of the generalized background dilaton and dilatino. As a final step we parametrize the previous theory in terms of the field content of the low energy effective 10-dimensional heterotic supergravity and we find that the perturbation of the 10-dimensional vielbein, Kalb-Ramond field, gauge field, gravitino and gaugino can be written in terms of vectors, as expected.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Eric Lescano ◽  
Jesús A. Rodríguez

Abstract The generalized Kerr-Schild ansatz (GKSA) is a powerful tool for constructing exact solutions in Double Field Theory (DFT). In this paper we focus in the heterotic formulation of DFT, considering up to four-derivative terms in the action principle, while the field content is perturbed by the GKSA. We study the inclusion of the generalized version of the Green-Schwarz mechanism to this setup, in order to reproduce the low energy effective heterotic supergravity upon parametrization. This formalism reproduces higher-derivative heterotic background solutions where the metric tensor and Kalb-Ramond field are perturbed by a pair of null vectors. Next we study higher-derivative contributions to the classical double copy structure. After a suitable identification of the null vectors with a pair of U(1) gauge fields, the dynamics is given by a pair of Maxwell equations plus higher derivative corrections in agreement with the KLT relation.


1996 ◽  
Vol 10 (27) ◽  
pp. 3727-3736
Author(s):  
H.C. LEE

The electron spectral weight of doped Mott insulators based on the two-dimensional slave boson gauge field theory is studied. The vertex correction with static gauge field is calculated in the second order perturbation theory. The vertex correction is found to be singular at low energy and requires non-perturbative treatments.


2006 ◽  
Vol 21 (03) ◽  
pp. 533-557 ◽  
Author(s):  
LORENZO MAGNEA ◽  
RODOLFO RUSSO ◽  
STEFANO SCIUTO

We present the multiloop partition function of open bosonic string theory in the presence of a constant gauge field strength, and discuss its low-energy limit. The result is written in terms of twisted determinants and differentials on higher-genus Riemann surfaces, for which we provide an explicit representation in the Schottky parametrization. In the field theory limit, we recover from the string formula the two-loop Euler–Heisenberg effective action for adjoint scalars minimally coupled to the background gauge field.


2015 ◽  
Vol 9 (1) ◽  
pp. 59-87 ◽  
Author(s):  
Martin Calamari

In recent years, the ideas of the mathematician Bernhard Riemann (1826–66) have come to the fore as one of Deleuze's principal sources of inspiration in regard to his engagements with mathematics, and the history of mathematics. Nevertheless, some relevant aspects and implications of Deleuze's philosophical reception and appropriation of Riemann's thought remain unexplored. In the first part of the paper I will begin by reconsidering the first explicit mention of Riemann in Deleuze's work, namely, in the second chapter of Bergsonism (1966). In this context, as I intend to show first, Deleuze's synthesis of some key features of the Riemannian theory of multiplicities (manifolds) is entirely dependent, both textually and conceptually, on his reading of another prominent figure in the history of mathematics: Hermann Weyl (1885–1955). This aspect has been largely underestimated, if not entirely neglected. However, as I attempt to bring out in the second part of the paper, reframing the understanding of Deleuze's philosophical engagement with Riemann's mathematics through the Riemann–Weyl conjunction can allow us to disclose some unexplored aspects of Deleuze's further elaboration of his theory of multiplicities (rhizomatic multiplicities, smooth spaces) and profound confrontation with contemporary science (fibre bundle topology and gauge field theory). This finally permits delineation of a correlation between Deleuze's plane of immanence and the contemporary physico-mathematical space of fundamental interactions.


2021 ◽  
Vol 62 (5) ◽  
pp. 052302
Author(s):  
Clay James Grewcoe ◽  
Larisa Jonke

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
A. D. Gallegos ◽  
U. Gürsoy ◽  
S. Verma ◽  
N. Zinnato

Abstract Non-Riemannian gravitational theories suggest alternative avenues to understand properties of quantum gravity and provide a concrete setting to study condensed matter systems with non-relativistic symmetry. Derivation of an action principle for these theories generally proved challenging for various reasons. In this technical note, we employ the formulation of double field theory to construct actions for a variety of such theories. This formulation helps removing ambiguities in the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity, Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions and compare with the previously obtained results in literature.


Sign in / Sign up

Export Citation Format

Share Document