scholarly journals Bubble bag end: a bubbly resolution of curvature singularity

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Ibrahima Bah ◽  
Pierre Heidmann

Abstract We construct a family of smooth charged bubbling solitons in $$ \mathbbm{M} $$ M 4×T2, four-dimensional Minkowski with a two-torus. The solitons are characterized by a degeneration pattern of the torus along a line in $$ \mathbbm{M} $$ M 4 defining a chain of topological cycles. They live in the same parameter regime as non-BPS non-extremal four-dimensional black holes, and are ultracompact with sizes ranging from miscroscopic to macroscopic scales. The six-dimensional framework can be embedded in type IIB supergravity where the solitons are identified with geometric transitions of non-BPS D1-D5-KKm bound states. Interestingly, the geometries admit a minimal surface that smoothly opens up to a bubbly end of space. Away from the solitons, the solutions are indistinguishable from a new class of singular geometries. By taking a limit of large number of bubbles, the soliton geometries can be matched arbitrarily close to the singular spacetimes. This provides the first classical resolution of a curvature singularity beyond the framework of supersymmetry and supergravity by blowing up topological cycles wrapped by fluxes at the vicinity of the singularity.

2021 ◽  
Vol 217 (3) ◽  
Author(s):  
E. M. Rossi ◽  
N. C. Stone ◽  
J. A. P. Law-Smith ◽  
M. Macleod ◽  
G. Lodato ◽  
...  

AbstractTidal disruption events (TDEs) are among the brightest transients in the optical, ultraviolet, and X-ray sky. These flares are set into motion when a star is torn apart by the tidal field of a massive black hole, triggering a chain of events which is – so far – incompletely understood. However, the disruption process has been studied extensively for almost half a century, and unlike the later stages of a TDE, our understanding of the disruption itself is reasonably well converged. In this Chapter, we review both analytical and numerical models for stellar tidal disruption. Starting with relatively simple, order-of-magnitude physics, we review models of increasing sophistication, the semi-analytic “affine formalism,” hydrodynamic simulations of the disruption of polytropic stars, and the most recent hydrodynamic results concerning the disruption of realistic stellar models. Our review surveys the immediate aftermath of disruption in both typical and more unusual TDEs, exploring how the fate of the tidal debris changes if one considers non-main sequence stars, deeply penetrating tidal encounters, binary star systems, and sub-parabolic orbits. The stellar tidal disruption process provides the initial conditions needed to model the formation of accretion flows around quiescent massive black holes, and in some cases may also lead to directly observable emission, for example via shock breakout, gravitational waves or runaway nuclear fusion in deeply plunging TDEs.


2016 ◽  
Vol 12 (S324) ◽  
pp. 273-278
Author(s):  
Robert Lasenby

AbstractBosonic fields around a spinning black hole can be amplified via ‘superradiance’, a wave analogue of the Penrose process, which extracts energy and momentum from the black hole. For hypothetical ultra-light bosons, with Compton wavelengths on ≳ km scales, such a process can lead to the exponential growth of gravitationally bound states around astrophysical Kerr black holes. If such particles exist, as predicted in many theories of beyond Standard Model physics, then these bosonic clouds give rise to a number of potentially-observable signals. Among the most promising are monochromatic gravitational radiation signals which could be detected at Advanced LIGO and future gravitational wave observatories.


2015 ◽  
Vol 24 (14) ◽  
pp. 1550102 ◽  
Author(s):  
Haryanto M. Siahaan

In this paper, we show the instability of a charged massive scalar field in bound states around Kerr–Sen black holes. By matching the near and far region solutions of the radial part in the corresponding Klein–Gordon equation, one can show that the frequency of bound state scalar fields contains an imaginary component which gives rise to an amplification factor for the fields. Hence, the unstable modes for a charged and massive scalar perturbation in Kerr–Sen background can be shown.


2011 ◽  
Vol 151 (2) ◽  
pp. 193-218 ◽  
Author(s):  
ALEXEI KOVALEV ◽  
NAM-HOON LEE

AbstractWe consider the connected-sum method of constructing compact Riemannian 7-manifolds with holonomy G2 developed by the first named author. The method requires pairs of projective complex threefolds endowed with anticanonical K3 divisors and the latter K3 surfaces should satisfy a certain ‘matching condition’ intertwining on their periods and Kähler classes. Suitable examples of threefolds were previously obtained by blowing up curves in Fano threefolds.In this paper, we give a large new class of suitable algebraic threefolds using theory of K3 surfaces with non-symplectic involution due to Nikulin. These threefolds are not obtainable from Fano threefolds as above, and admit matching pairs leading to topologically new examples of compact irreducible G2-manifolds. ‘Geography’ of the values of Betti numbers b2, b3 for the new (and previously known) examples of irreducible G2 manifolds is also discussed.


2020 ◽  
Vol 498 (3) ◽  
pp. 3807-3816
Author(s):  
Charles Zivancev ◽  
Jeremiah Ostriker ◽  
Andreas H W Küpper

ABSTRACT We perform N-body simulations on some of the most massive galaxies extracted from a cosmological simulation of hierarchical structure formation with total masses in the range 1012 M⊙ < Mtot < 3 × 1013 M⊙ from 4 ≥ z ≥ 0. After galactic mergers, we track the dynamical evolution of the infalling black holes (BHs) around their host’s central BHs (CBHs). From 11 different simulations, we find that, of the 86 infalling BHs with masses >104 M⊙, 36 merge with their host’s CBH, 13 are ejected from their host galaxy, and 37 are still orbiting at z = 0. Across all galaxies, 33 BHs are kicked to a higher orbit after close interactions with the CBH binary or multiple, after which only one of them merged with their hosts. These orbiting BHs should be detectable by their anomalous (not low-mass X-ray binary) spectra. The X-ray luminosities of the orbiting massive BHs at z = 0 are in the range $10^{28}-10^{43}\, \mathrm{erg}~\mathrm{s}^{-1}$, with a currently undetectable median value of $10^{33}\, \mathrm{erg}~\mathrm{s}^{-1}$. However, the most luminous ∼5 per cent should be detectable by existing X-ray facilities.


2019 ◽  
Vol 3 (3) ◽  
pp. 242-250 ◽  
Author(s):  
Benny Trakhtenbrot ◽  
Iair Arcavi ◽  
Claudio Ricci ◽  
Sandro Tacchella ◽  
Daniel Stern ◽  
...  

2014 ◽  
Vol 106 (3) ◽  
pp. 30003 ◽  
Author(s):  
W. J. Gong ◽  
B. H. Wu ◽  
S. F. Zhang ◽  
Y. S. Zheng

Sign in / Sign up

Export Citation Format

Share Document