scholarly journals Dijet impact factor in DIS at next-to-leading order in the Color Glass Condensate

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Paul Caucal ◽  
Farid Salazar ◽  
Raju Venugopalan

Abstract We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to $$ \mathcal{O} $$ O ($$ {\alpha}_s^2 $$ α s 2 ln(xf/xBj)), where xf is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider.

2018 ◽  
Vol 192 ◽  
pp. 00014
Author(s):  
D.N. Triantafyllopoulos

We consider the next-to-leading order (NLO) calculation of single inclusive particle production at forward rapidities in proton-nucleus collisions and in the framework of the Color Glass Condensate (CGC). We focus on the quark channel and the corrections associated with the impact factor. In the first step of the evolution the kinematics of the emitted gluon is kept exactly (and not in the eikonal approximation), but such a treatment which includes NLO corrections is not explicitly separated from the high energy evolution. Thus, in this newly established “factorization scheme”, there is no “rapidity subtraction”. The latter suffers from fine tuning issues and eventually leads to an unphysical (negative) cross section. On the contrary, our reorganization of the perturbation theory leads by definition to a well-defined cross section and the numerical evaluation of the NLO correction is shown to have the correct size.


Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Sanjin Benić ◽  
Kenji Fukushima ◽  
Oscar Garcia-Montero ◽  
Raju Venugopalan

We use the Color Glass Condensate (CGC) effective field theory (EFT) to calculate inclusive photon production to leading order q g → q γ , (LO), and next-to leading order g g → q q ¯ γ (NLO) at LHC energies. These processes dominate the photon production at small-x , where x ≲ 0 . 01 in the target and projectile protons. We show that the NLO contribution dominates at values of x typical at the LHC, since its cross-section is sensitive to the gluon distributions in both protons. We perform a comparison of our results to the available inclusive photon data, from ATLAS and CMS at center-of-mass energies of 2 . 76 and 7 TeV . This data lies in the range k ⊥ > 20 GeV . We show that for this range, the k ⊥ -factorized cross-section converges to the full CGC EFT result, and can be used for the comparison. We find that it gives good agreement with experimental results. Our results are to be considered as a first step towards constraining unintegrated gluon distributions, which will be continued for larger systems, where coherent scatterings are enhanced.


2020 ◽  
Vol 44 (7) ◽  
pp. 074110
Author(s):  
Yanbing Cai ◽  
Wenchang Xiang ◽  
Mengliang Wang ◽  
Daicui Zhou

Sign in / Sign up

Export Citation Format

Share Document