color charge
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 24 (4) ◽  
pp. 326-328
Author(s):  
V. Skalozub

In SU(2) gluodynamics, in the background Feynman gauge the effective charge ğ2(A0) is calculated in the presence of the A0 condensate which is spontaneous generated at high temperature. It is determined from a two-loop effective potential W(A0). Temperature dependence in a wide interval is investigated.


2021 ◽  
Vol 12 (2) ◽  
pp. 164-172
Author(s):  
Gudrun Kalmbach H.E.

The Planck and other natural numbers are used for units of forces. They arise also as weights of Gleason operators, defined by 3-dimensional spin-like base triples GF and their weigths. The spin lengths are the spin GF weights for instance. The measuring GF operator triples arise by projective duality from 1-dimensional force vectors in projective to R5 extended Hilbert space H4. Color charges are set as a separate force, using a G-compass (figure 2). For the universes evolution after a big bang several maps are introduced, mostly belonging to the gravity field quantum rgb-graviton. It presents the neutral color charge of nucleons. Orthogonal projections of H4, also in spiralic and angular form, central or stereographic projective maps belong to them. They project also the S³ factor of the strong interation geometry S³xS5 down to the SU(2) geometry S³ of the Hopf map. Fiber bundle maps are added also to S5 with the same fiber S1 to the base space CP² for nucleons and atomic kernels. In octonian coordinates, listed by indices, 01234567, there are three projections from the energy space 123456 of SI to complex quaternionic 2x2-matrix presentations of spacetime 1234, of CP² as 3456 and of GR with mass and rgb-gravitons 1256. GR and CP² are projected into 1234 as the universes spacetime, observable as bubbles for atoms and matter 3456 and GR potentials and actions about and for mass carrying systems 1256.


2021 ◽  
Vol 12 (1) ◽  
pp. 175-181
Author(s):  
Gudrun Kalmbach H.E.

Some finite subspace models L are presented for quantum structures which replace the use of countable infinite Hilbert space H dimensions. A maximal Boolean sublattice, called block, is 24, where its four atoms directly above 0εL, base vectors of H in 24 are drawn as four points on an interval. Blocks can overlap in one or two atoms. Different kinds of operators can map one block onto another and interpretations are given such that subspaces can carry on their base vector tuple real, complex or quaternionic numbers, energies, symmetries and generate coordinate lines. Describing states of physical systems is done using L and its applications for dynamical modelling. They don‘t need the infinte dimensional vectors of H. L has in the first model 11 blocks and 24 atoms (figure 1). They correspond to the 24 elements of the tetrahedral S4 symmetry. S4 arises from a spin-line rgb-graviton whirl operator with center at the tip of a tetrahedron and a nucleon triangle base with three quarks as vertices. The triangles factor group D3 of S4 is due to the CPT Klein normal subgroup Z2 x Z2 of S4 . It has a strong interaction SI rotor for the nucleons inner dynamics which is used for integrating functions, exchanging energies of nucleon with its environment and setting barycentrical coordinates in the triangle. At their intersection B as barycenter sets a Higgs boson or field the rescaled quark mass of a nucleon. Each factor class of one element from D3 assigns to it a color charge, a coordinate, an energy vector and a symmetry. Symmetries attached can be different according to interactions involved. Every atom of L has then a specific character with different properties.Three characters are added to octonian base vectors, listed by their indices as n = 0,1,…,7, and named for the atoms of L as na, nb, nc. The structure and element attributes of the finite subspace lattices L are desribed in many examples and models which technical constructed run macroscopically. Several models are described below. Example, the color charge whirl as rgb-graviton projection operator maps the block 2c3b5a6a to 0a1a2a3a. The symmetries change dimension from 3x3- to 2x2-matrices. From SU(3) are λ1 on 3b mapped to the SU(2) x-coordinate Pauli matrix σ1, from λ2 on 5a to σ2 y-coordinate and from λ3 on 6a to σ3 z-coordinate of real Euclidean space R³. The SU(3) matrices have complex w3 = z +ict, w2 = (iy,f), w1 = (x,m) coordinates. In figure 3 is shown how a rotation of two proton tetrahedrons for fusion changes the two linearly independent wj vectors to the 1-dimensional x,y,z base vectors. In deuteron then on one coordinate line sit with Cooper paire u-d-quarks at the ends the Heisenberg coupled energy or space vector rays 15 (x,m), m mass measured in kg, x in meter, 23 (iy,E(rot)), E(rot) rotational energy measured in Joule J, y in meter, 46 (ict,f), t time measured in seconds, f = 1/∆t frequency s inverse time interval measured in Hz. The six color charges are red r on +x as octonian coordinate 1, green g on +y as 2 , blue b on -z as 6, turquoise on -x as 5, magenta on -y as 3, yellow on +z as 4..


2021 ◽  
Vol 119 (10) ◽  
pp. 103505
Author(s):  
Hongtao Xu ◽  
Hengliang Wang ◽  
Lijian Zhang ◽  
Liping Zhu ◽  
Pingping Chen ◽  
...  
Keyword(s):  

2021 ◽  
pp. 136560
Author(s):  
Adrian Dumitru ◽  
Heikki Mäntysaari ◽  
Risto Paatelainen

2021 ◽  
Vol 57 (6) ◽  
Author(s):  
L. Ya. Glozman ◽  
C. B. Lang

AbstractAbove the pseudocritical temperature $$T_c$$ T c of chiral symmetry restoration a chiral spin symmetry (a symmetry of the color charge and of electric confinement) emerges in QCD. This implies that QCD is in a confining mode and there are no free quarks. At the same time correlators of operators constrained by a conserved current behave as if quarks were free. This explains observed fluctuations of conserved charges and the absence of the rho-like structures seen via dileptons. An independent evidence that one is in a confining mode is very welcome. Here we suggest a new tool how to distinguish free quarks from a confining mode. If we put the system into a finite box, then if the quarks are free one necessarily obtains a remarkable diffractive pattern in the propagator of a conserved current. This pattern is clearly seen in a lattice calculation in a finite box and it vanishes in the infinite volume limit as well as in the continuum. In contrast, the full QCD calculations in a finite box show the absence of the diffractive pattern implying that the quarks are confined.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Ming Li ◽  
Vladimir V. Skokov

Abstract In high energy proton-nucleus collisions, the single- and double-inclusive soft gluon productions at the leading order have been calculated and phenomenologically studied in various approaches for many years. These studies do not take into account the saturation and multiple rescatterings in the field of the proton. The first saturation correction to these leading order results (the terms that are enhanced by the combination $$ {\alpha}_s^2{\mu}^2 $$ α s 2 μ 2 , where μ2 is the proton’s color charge squared per unit transverse area) has not been completely derived despite recent attempts using a diagrammatic approach. This paper is the first in a series of papers towards analytically completing the first saturation correction to physical observables in high energy proton-nucleus collisions. Our approach is to analytically solve the classical Yang-Mills equations in the dilute-dense regime using the Color Glass Condensate effective theory and compute physical observables constructed from classical gluon fields. In the current paper, the Yang-Mills equations are solved perturbatively in the field of the dilute object (the proton). Next-to-leading order and next-to-next-to-leading order analytic solutions are explicitly constructed. A systematic way to obtain all higher order analytic solutions is outlined.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Ming Li ◽  
Vladimir V. Skokov

Abstract Exploiting recently obtained analytic solutions of classical Yang-Mills equations for higher order perturbations in the field of the dilute object (proton), we derive the complete first saturation correction to the single inclusive semi-hard gluon production in high energy proton-nucleus collisions by applying the Lehmann-Symanzik-Zimmermann reduction formula. We thus finalize the program started by Balitsky (see ref. [1]) and independently by Chirilli, Kovchegov and Wertepny (see ref. [2]) albeit using a very different approach to carry out our calculations. We extracted the functional dependence of gluon spectrum on the color charge densities of the colliding objects; thus our results can be used to evaluate complete first saturation correction to the double/multiple inclusive gluon productions.


2021 ◽  
pp. 2150095
Author(s):  
Aram Bahroz Brzo ◽  
David Alvarez-Castillo

In this study, we work out thermodynamic functions for a quantum gas of mesons described as color-electric charge dipoles. They refer to a particular parametrization of the trigonometric Rosen–Morse potential which allows to transform it to a perturbation of free quantum motion on the three-dimensional hypersphere, [Formula: see text], a manifold that can host only charge-neutral systems, the charge dipoles being the configuration of the minimal number of constituents. To the amount charge neutrality manifests itself as an important aspect of the color confinement in the theory of strong interaction, the Quantum Chromodynamics, we expect our findings to be of interest to the evaluation of temperature phenomena in the physics of hadrons and in particular in a quantum gas of color charge dipoles as are the mesons. The results are illustrated for [Formula: see text] and [Formula: see text] mesons.


Sign in / Sign up

Export Citation Format

Share Document