scholarly journals Domain walls for two-dimensional renormalization group flows

2012 ◽  
Vol 2012 (12) ◽  
Author(s):  
Davide Gaiotto
2009 ◽  
Vol 23 (18) ◽  
pp. 3739-3751 ◽  
Author(s):  
KEN-ICHI AOKI ◽  
TAMAO KOBAYASHI ◽  
HIROSHI TOMITA

Using a recently proposed new renormalization group method (tensor renormalization group), we analyze the Ising model on the two-dimensional square lattice. For the lowest-order approximation with two-domain wall states, it realizes the idea of coarse graining of domain walls. We write down explicit analytic renormalization transformation and prove that the picture of the coarse graining of the physical domain walls does hold for all physical renormalization group flows. We solve it to get the fixed point structure and obtain the critical exponents and the critical temperature. These results are very near to the exact values. We also briefly report the improvement using four-domain wall states.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Martin Fluder ◽  
Christoph F. Uhlemann

Abstract Renormalization group flows are studied between 5d SCFTs engineered by (p, q) 5-brane webs with large numbers of external 5-branes. A general expression for the free energy on S5 in terms of single-valued trilogarithm functions is derived from their supergravity duals, which are characterized by the 5-brane charges and additional geometric parameters. The additional geometric parameters are fixed by regularity conditions, and we show that the solutions to the regularity conditions extremize a trial free energy. These results are used to survey a large sample of $$ \mathcal{O} $$ O (105) renormalization group flows between different 5d SCFTs, including Higgs branch flows and flows that preserve the SU(2) R- symmetry. In all cases the free energy changes monotonically towards the infrared, in line with a 5d F -theorem.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ilka Brunner ◽  
Fabian Klos ◽  
Daniel Roggenkamp

Abstract In this paper, we construct defects (domain walls) that connect different phases of two-dimensional gauged linear sigma models (GLSMs), as well as defects that embed those phases into the GLSMs. Via their action on boundary conditions these defects give rise to functors between the D-brane categories, which respectively describe the transport of D-branes between different phases, and embed the D-brane categories of the phases into the category of D-branes of the GLSMs.


Sign in / Sign up

Export Citation Format

Share Document