scholarly journals A simple quantum test for smooth horizons

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Kyriakos Papadodimas ◽  
Suvrat Raju ◽  
Pushkal Shrivastava

Abstract We develop a new test that provides a necessary condition for a quantum state to be smooth in the vicinity of a null surface: “near-horizon modes” that can be defined locally near any patch of the null surface must be correctly entangled with each other and with their counterparts across the surface. This test is considerably simpler to implement than a full computation of the renormalized stress-energy tensor. We apply this test to Reissner-Nordström black holes in asymptotically anti-de Sitter space and provide numerical evidence that the inner horizon of such black holes is singular in the Hartle-Hawking state. We then consider BTZ black holes, where we show that our criterion for smoothness is satisfied as one approaches the inner horizon from outside. This results from a remarkable conspiracy between the properties of mode-functions outside the outer horizon and between the inner and outer horizon. Moreover, we consider the extension of spacetime across the inner horizon of BTZ black holes and show that it is possible to define modes behind the inner horizon that are correctly entangled with modes in front of the inner horizon. Although this provides additional suggestions for the failure of strong cosmic censorship, we lay out several puzzles that must be resolved before concluding that the inner horizon will be traversable.

2016 ◽  
Vol 41 ◽  
pp. 1660127
Author(s):  
Irina Dymnikova ◽  
Anna Dobosz ◽  
Bożena Sołtysek

We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
M. Sharif ◽  
Saadia Mumtaz

This paper is devoted to construct Schwarzschild-de Sitter and anti-de Sitter thin-shell wormholes by employing Visser’s cut and paste technique. The Darmois-Israel formalism is adopted to formulate the surface stresses of the shell. We analyze null and weak energy conditions as well as attractive and repulsive characteristics of thin-shell wormholes. We also explore stable and unstable solutions against linear perturbations by taking two different Chaplygin gas models for exotic matter. It is concluded that the stress-energy tensor components violate the null and weak energy conditions indicating the existence of exotic matter at the wormhole throat. Finally, we find unstable and stable configurations for the constructed thin-shell wormholes.


2020 ◽  
Vol 35 (31) ◽  
pp. 2050203
Author(s):  
Ujjal Debnath

Here we propose the extended modified gravity theory named [Formula: see text] gravity where [Formula: see text] is the Ricci scalar, [Formula: see text] is the Gauss–Bonnet invariant, and [Formula: see text] is the trace of the stress-energy tensor. We derive the gravitational field equations in [Formula: see text] gravity by taking the least action principle. Next we construct the [Formula: see text] in terms of [Formula: see text], [Formula: see text] and [Formula: see text] in de Sitter as well as power-law expansion. We also construct [Formula: see text] if the expansion follows the finite-time future singularity (big rip singularity). We investigate the energy conditions in this modified theory of gravity and examine the validity of all energy conditions.


Author(s):  
M. Sharif ◽  
Komal Ashraf

This paper investigates stability of thin-shell developed from the matching of interior traversable wormhole with exterior Ayon–Beato–Garcia–de Sitter regular black hole through cut and paste approach. We employ Israel formalism and Lanczos equations to obtain the components of surface stress-energy tensor at thin-shell. These surface stresses violate null and weak energy conditions that suggest the presence of exotic matter at thin-shell. The surface pressure explains collapse as well as expanding behavior of the developed geometry. We explore stability of the constructed thin-shell through both perturbations along shell radius as well as barotropic equation of state for three appropriate values of the shape function [Formula: see text]. It is concluded that stability of thin-shell depends on the shape function, charge and cosmological constant.


Open Physics ◽  
2011 ◽  
Vol 9 (3) ◽  
Author(s):  
Irina Dymnikova ◽  
Evgeny Galaktionov

AbstractA unified description of dark ingredients is realized by a vacuum dark fluid defined by symmetry of its stress-energy tensor and allowed by General Relativity. The symmetry is reduced compared with the maximally symmetric de Sitter vacuum, which makes vacuum dark fluid essentially anisotropic and allows its density and pressure to evolve. It represents distributed vacuum dark energy by a time-evolving and spatially inhomogeneous cosmological term, and vacuum dark matter by gravitational vacuum solitons which are regular gravitationally bound structures without horizons (dark particles or dark stars), with the de Sitter centre (Λδki) in de Sitter space (λδki).


Sign in / Sign up

Export Citation Format

Share Document