traversable wormhole
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 52)

H-INDEX

15
(FIVE YEARS 5)

Author(s):  
Jafar Sadeghi ◽  
Mehdi Shokri ◽  
Saeed Noori Gashti ◽  
Behnam Pourhassan ◽  
Prabir Rudra

In this paper, we study the traversable wormhole solutions for a logarithmic corrected [Formula: see text] model by considering two different statements of shape [Formula: see text] and redshift [Formula: see text] functions. We calculate the parameters of the model including energy density [Formula: see text], tangential pressure [Formula: see text] and radial pressure [Formula: see text] for the corresponding forms of the functions. Then, we investigate different energy conditions such as null energy condition, weak energy condition, dominant energy condition and strong energy condition for our considered cases. Finally, we explain the satisfactory conditions of energy of the models by related plots.


2021 ◽  
Author(s):  
◽  
Alexander Simpson

<p>Various spacetime candidates for traversable wormholes, regular black holes, and ‘black-bounces’ are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static (time-independent as well as nonrotational), with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch – some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called ‘exponential metric’ – well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the ‘black-bounce’ to traversable wormhole case – where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter a. This notion of ‘blackbounce’ is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable ‘bounce’ into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing/ingoing EddingtonFinkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.</p>


2021 ◽  
Author(s):  
◽  
Alexander Simpson

<p>Various spacetime candidates for traversable wormholes, regular black holes, and ‘black-bounces’ are presented and thoroughly explored in the context of the gravitational theory of general relativity. All candidate spacetimes belong to the mathematically simple class of spherically symmetric geometries; the majority are static (time-independent as well as nonrotational), with a single dynamical (time-dependent) geometry explored. To the extent possible, the candidates are presented through the use of a global coordinate patch – some of the prior literature (especially concerning traversable wormholes) has often proposed coordinate systems for desirable solutions to the Einstein equations requiring a multi-patch atlas. The most interesting cases include the so-called ‘exponential metric’ – well-favoured by proponents of alternative theories of gravity but which actually has a standard classical interpretation, and the ‘black-bounce’ to traversable wormhole case – where a metric is explored which represents either a traversable wormhole or a regular black hole, depending on the value of the newly introduced scalar parameter a. This notion of ‘blackbounce’ is defined as the case where the spherical boundary of a regular black hole forces one to travel towards a one-way traversable ‘bounce’ into a future reincarnation of our own universe. The metric of interest is then explored further in the context of a time-dependent spacetime, where the line element is rephrased with a Vaidya-like time-dependence imposed on the mass of the object, and in terms of outgoing/ingoing EddingtonFinkelstein coordinates. Analysing these candidate spacetimes extends the pre-existing discussion concerning the viability of non-singular black hole solutions in the context of general relativity, as well as contributing to the dialogue on whether an arbitrarily advanced civilization would be able to construct a traversable wormhole.</p>


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Shingo Takeuchi

AbstractIn this study, we consider a gas in the Morris–Thorne traversable wormhole space-time, and analyze the critical temperature of the Bose-Einstein condensate in the vicinity of its throat. Our results show that it is equal to zero. Then, from this result, we point out that a state analogous to the Josephson junction is always formed at any temperature in the vicinity of its throat. This is of interest as a gravitational phenomenology. Of course, there is the problem of the exotic matter, but we perform this work without treating it.


2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Carlos A. Benavides-Gallego ◽  
Wen-Biao Han ◽  
Daniele Malafarina ◽  
Bobomurat Ahmedov ◽  
Ahmadjon Abdujabbarov

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Suzanne Bintanja ◽  
Ricardo Espíndola ◽  
Ben Freivogel ◽  
Dora Nikolakopoulou

Abstract We construct an eternal traversable wormhole connecting two asymptotically AdS4 regions. The wormhole is dual to the ground state of a system of two identical holographic CFT’s coupled via a single low-dimension operator. The coupling between the two CFT’s leads to negative null energy in the bulk, which supports a static traversable wormhole. As the ground state of a simple Hamiltonian, it may be possible to make these wormholes in the lab or on a quantum computer.


2021 ◽  
Vol 2021 (10) ◽  
pp. 059
Author(s):  
Mariam Bouhmadi-López ◽  
Che-Yu Chen ◽  
Xiao Yan Chew ◽  
Yen Chin Ong ◽  
Dong-han Yeom

2021 ◽  
Vol 433 ◽  
pp. 168604
Author(s):  
L.A. Lessa ◽  
R. Oliveira ◽  
J.E.G. Silva ◽  
C.A.S. Almeida

Sign in / Sign up

Export Citation Format

Share Document