scholarly journals Lower-Dimensional Nonlinear Brinkman’s Law for Non-Newtonian Flows in a Thin Porous Medium

2021 ◽  
Vol 18 (4) ◽  
Author(s):  
María Anguiano ◽  
Francisco J. Suárez-Grau
2021 ◽  
Vol 6 (12) ◽  
pp. 13464-13479
Author(s):  
W. Abbas ◽  
◽  
Ahmed M. Megahed ◽  

<abstract><p>The present study explores the effects of viscous dissipation, the thermal dependent conductivity and the thermal dependent viscosity on the steady motion of a Powell-Eyring fluid over a stratified stretching sheet which embedded in a porous medium. The fact that the nature of non-Newtonian flows problems are highly nonlinear equations has been taken into consideration here and this was the motive objective to determine numerical solutions. So, the emphasis is on the methodology adopted for obtaining numerical solutions that yielded after employing the Chebyshev spectral method. The temperature distributions and the velocity components are evaluated by solving numerically the boundary value problems that correspond to the proposed problem. Then, some figures have been plotted to elucidates the effect of different physical parameters appearing in the problem on both the temperature and the velocity profiles. The presence of the thermal radiation and the viscous dissipation in the fluid flow are shown to have quite a dramatic effect on the temperature profiles. In culmination, cooling process in nuclear reactors and geothermal engineering especially in the presence of thermal stratification phenomenon can be adopted as an application of this study. The theoretical and the observed results provide a fairly good qualitative agreement.</p></abstract>


The study of the transport and capture of particles moving in a fluid flow in a porous medium is an important problem of underground hydromechanics, which occurs when strengthening loose soil and creating watertight partitions for building tunnels and underground structures. A one-dimensional mathematical model of long-term deep filtration of a monodisperse suspension in a homogeneous porous medium with a dimensional particle retention mechanism is considered. It is assumed that the particles freely pass through large pores and get stuck at the inlet of small pores whose diameter is smaller than the particle size. The model takes into account the change in the permeability of the porous medium and the permissible flow through the pores with increasing concentration of retained particles. A new spatial variable obtained by a special coordinate transformation in model equations is small at any time at each point of the porous medium. A global asymptotic solution of the model equations is constructed by the method of series expansion in a small parameter. The asymptotics found is everywhere close to a numerical solution. Global asymptotic solution can be used to solve the inverse filtering problem and when planning laboratory experiments.


2013 ◽  
Vol 23 (2) ◽  
pp. 165-191
Author(s):  
Mohamed F. El-Sayed ◽  
M. H. M. Moussa ◽  
Ahmed A. A. Hassan ◽  
N. M. Hafez

Sign in / Sign up

Export Citation Format

Share Document