scholarly journals Powell-Eyring fluid flow over a stratified sheet through porous medium with thermal radiation and viscous dissipation

2021 ◽  
Vol 6 (12) ◽  
pp. 13464-13479
Author(s):  
W. Abbas ◽  
◽  
Ahmed M. Megahed ◽  

<abstract><p>The present study explores the effects of viscous dissipation, the thermal dependent conductivity and the thermal dependent viscosity on the steady motion of a Powell-Eyring fluid over a stratified stretching sheet which embedded in a porous medium. The fact that the nature of non-Newtonian flows problems are highly nonlinear equations has been taken into consideration here and this was the motive objective to determine numerical solutions. So, the emphasis is on the methodology adopted for obtaining numerical solutions that yielded after employing the Chebyshev spectral method. The temperature distributions and the velocity components are evaluated by solving numerically the boundary value problems that correspond to the proposed problem. Then, some figures have been plotted to elucidates the effect of different physical parameters appearing in the problem on both the temperature and the velocity profiles. The presence of the thermal radiation and the viscous dissipation in the fluid flow are shown to have quite a dramatic effect on the temperature profiles. In culmination, cooling process in nuclear reactors and geothermal engineering especially in the presence of thermal stratification phenomenon can be adopted as an application of this study. The theoretical and the observed results provide a fairly good qualitative agreement.</p></abstract>

Author(s):  
Khadijah M. Abualnaja

This paper introduces a theoretical and numerical study for the problem of Casson fluid flow and heat transfer over an exponentially variable stretching sheet. Our contribution in this work can be observed in the presence of thermal radiation and the assumption of dependence of the fluid thermal conductivity on the heat. This physical problem is governed by a system of ordinary differential equations (ODEs), which is solved numerically by using the differential transformation method (DTM). This numerical method enables us to plot figures of the velocity and temperature distribution through the boundary layer region for different physical parameters. Apart from numerical solutions with the DTM, solutions to our proposed problem are also connected with studying the skin-friction coefficient. Estimates for the local Nusselt number are studied as well. The comparison of our numerical method with previously published results on similar special cases shows excellent agreement.


2012 ◽  
Vol 04 (04) ◽  
pp. 1250041 ◽  
Author(s):  
PARAS RAM ◽  
VIKAS KUMAR

The present study is carried out to examine the effects of magnetic field-dependent viscosity on steady axi-symmetric ferrofluid flow due to rotating disk in porous medium. The momentum equations give rise to highly nonlinear partial differential equations, which are converted to a system of nonlinear coupled ordinary differential equations on using Karman's similarity transformation. Then a numerical technique, which is the combination of finite difference and shooting methods, is employed in MATLAB environment to get the numerical solution of the problem. Beside the velocity and pressure profiles, the effect of MFD viscosity parameter and porosity parameter are also examined on radial, tangential skin frictions and on boundary layer displacement thickness. The results thus obtained numerically over the entire range of physical parameters are presented graphically.


2018 ◽  
Vol 48 (2) ◽  
pp. 744-759 ◽  
Author(s):  
Kh. Hosseinzadeh ◽  
M. Gholinia ◽  
B. Jafari ◽  
A. Ghanbarpour ◽  
H. Olfian ◽  
...  

2022 ◽  
Vol 52 (1) ◽  
pp. 35-41
Author(s):  
Silpisikha Goswami ◽  
Kamalesh Kumar Pandit ◽  
Dipak Sarma

Our motive is to examine the impact of thermal radiation and suction or injection with viscous dissipation on an MHD boundary layer flow past a vertical porous stretched sheet immersed in a porous medium. The set of the flow equations is converted into a set of non-linear ordinary differential equations by using similarity transformation. We use Runge Kutta method and shooting technique in MATLAB Package to solve the set of equations. The impact of non-dimensional physical parameters on flow profiles is analysed and depicted in graphs. We observe the influence of non-dimensional physical quantities on the Nusselt number, the Sherwood number, and skin friction and presented in tables. A comparison of the obtained numerical results with existing results in a limiting sense is also presented. We enhance radiation to observe the deceleration of fluid velocity and temperature profile for both suction and injection. While enhancing porosity parameter accelerates velocity whereas decelerates temperature profile. As the heat source parameter increases, the temperature of the fluid decreases for both suction and injection, it has been found. With the increasing values of the radiation parameter, the skin friction and heat transfer rate decreases. Increasing magnetic parameter decelerates the skin friction, Nusselt number, and Sherwood number.


Author(s):  
K. Saritha ◽  
R. Muthusami ◽  
M. Rameshkumar

This Paper contributes heat transfer phenomena in mixed convection flow of Siskoferronanofluidover a porous surface in the presence of a temperature gradient heat sink with prescribed heatflux. The effect of viscous dissipation and thermal radiation on the flow field is also taken in to consideration. The three types of ferromagnetic particles Nickel Zinc ferrite (Ni–ZnFe2O4), ManganeseZinc ferrite (Mn1/2Zn1/2Fe2O4) and Cobalt ferrite (CoFe2O4) are considered with water (H2O)and Ethylene Glycol (C2H6O2) as conventional base fluids. The RungeKuttaFehlberg method of numerical methodology is used to solve momentum and energy equations. With the help of graphs andtables, the effect of various associated physical parameters on the velocity, temperature, Skin frictioncoefficient and Nusselt number is studied. The present results indicate that the heat transfer rate ofEthylene Glycol based Siskoferronanofluid is higher than that of water based fluid and also waterbased Siskoferronanofluid reduces shear stress of the fluid flow rapidly than Ethylene glycol basedfluid. The accuracy of the results comparison table is validated with the current data.


2020 ◽  
Vol 75 (3) ◽  
pp. 225-239 ◽  
Author(s):  
Fayyaz Ahmad ◽  
Mubbashar Nazeer ◽  
Mubashara Saeed ◽  
Adila Saleem ◽  
Waqas Ali

AbstractIn this paper, a study of the flow of Eyring-Powell (EP) fluid in an infinite circular long pipe under the consideration of heat generation and thermal radiation is considered. It is assumed that the viscosity of the fluid is an exponential function of the temperature of the fluid. The flow of fluid depends on many variables, such as the physical property of each phase and shape of solid particles. To convert the given governing equations into dimensionless form, the dimensionless quantities have been used and the resultant boundary value problem is solved for the calculation of velocity and temperature fields. The analytical solutions of velocity and temperature are calculated with the help of the perturbation method. The effects of the fluidic parameters on velocity and temperature are discussed in detail. Finite difference method is employed to find the numerical solutions and compared with the analytical solution. The magnitude error in velocity and temperature is obtained in each case of the viscosity model and plotted against the radius of the pipe. Graphs are plotted to describe the influence of various parameter EP parameters, heat generation parameter and thermal radiation parameters against velocity and temperature profiles. The fluid temperature has decreasing and increasing trends with respect to radiation and heat generations parameters, respectively.


2014 ◽  
Vol 11 (2) ◽  
pp. 147-156 ◽  
Author(s):  
M.C Raju ◽  
S.V.K Varma

The problem of unsteady MHD free convective, incompressible electrically conducting, non-Newtonian fluid through porous medium bounded by an infinite porous plate in the presence of constant suction has been studied. A magnetic field of uniform strength is assumed to be applied normal to the plate. The equations governing the fluid flow which are highly nonlinear are reduced to linear by using perturbation method and have been solved subject to the relevant boundary conditions. It is noted that the velocity of the fluid is increased as Soret number and suction parameter increase, whereas reverse phenomenon is observed in case of magnetic field strength and sink strength. DOI: http://dx.doi.org/10.3329/jname.v11i2.17563


Sign in / Sign up

Export Citation Format

Share Document