A novel model of inflammatory pain in human skin involving topical application of sodium lauryl sulfate

2010 ◽  
Vol 59 (9) ◽  
pp. 775-781 ◽  
Author(s):  
L. J. Petersen ◽  
A. M. Lyngholm ◽  
L. Arendt-Nielsen
Author(s):  
M. V. Bidevkina ◽  
M. I. Golubeva ◽  
A. V. Limantsev ◽  
I. N. Razumnaya ◽  
T. N. Potapova ◽  
...  

Sodium lauryl sulfate is the most common surfactant used in the production of detergents, chloroprene rubber, plastics, artificial furs and in pharmaceutical industry. Sodium lauryl sulfate is a moderately hazardous substance when introduced into the stomach (DL50 for white mice and rats is in the range of 2086-2700 mg/kg), has a pronounced local irritant effect on the skin and mucous membranes of the eyes, has a skin-resorptive, sensitizing and pronounced cumulative effects. The threshold for acute inhalation action is set at 15,3 mg/m3 for changes in the function of the nervous system and irritating effects on the mucous membranes of the upper respiratory tract (an increase in the total number of cells in the nasal flushes).Recommended for approval tentative safe exposure level of sodium lauryl sulfate in the air of the working area is 0.2+ mg/m3 (aerosol).


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Gongpu Wen ◽  
Kun Chen ◽  
Yanhong Zhang ◽  
Yue Zhou ◽  
Jun Pan ◽  
...  

AbstractA novel strategy was proposed to fabricate alkali-resistant PVDF membrane via sodium lauryl sulfate (SDS) attached to the surface of membrane and immobilized by UV-curable polyester acrylate and tri(propylene glycol) diacrylate (TPGDA). The attached anionic surfactant, SDS, on the membrane surface can resist the alkali corrosion by NaOH, and the curing of the resin can immobilize the SDS on the membrane firmly. Due to the unique alkali resistance of SDS and resin formed, the UV-curable resin-modified PVDF membrane showed greatly enhanced alkali-resistant ability. Characterization of SEM and FTIR showed that polyester acrylate and TPGDA were cured successfully under the action of 1-hydroxycyclohexyl phenyl ketone (184) and ultraviolet light. Whiteness, differential scanning calorimeter and X-ray photoelectron spectrometer characterization showed that the modified PVDF membrane had a lower degree of dehydrofluorination than the pristine PVDF membrane after alkali treatment. Results of the detailed alkali-resistant analysis indicated that the F/C ratio of the UV-curable resin-modified PVDF membrane decreased by 2.6% after alkali treatment compared to pristine PVDF membrane decreased by 19.28%. The alkali-resistant performance was mainly attributed to the immobilized SDS. This study provided a facile and scalable method for designing alkali-resistant PVDF membrane, which shows a promising potential in the treatment of alkaline wastewater and alkaline-cleaning PVDF membrane.


Sign in / Sign up

Export Citation Format

Share Document