scholarly journals A step in the Delaunay mosaic of order k

2021 ◽  
Vol 112 (1) ◽  
Author(s):  
Herbert Edelsbrunner ◽  
Anton Nikitenko ◽  
Georg Osang

AbstractGiven a locally finite set $$X \subseteq {{\mathbb {R}}}^d$$ X ⊆ R d and an integer $$k \ge 0$$ k ≥ 0 , we consider the function $${\mathbf{w}_{k}^{}} :{\mathrm{Del}_{k}{({X})}} \rightarrow {{\mathbb {R}}}$$ w k : Del k ( X ) → R on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551–559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76–83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90–145, 1998) and Freij (Discrete Math 309:3821–3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space.

2011 ◽  
Vol 03 (04) ◽  
pp. 473-489
Author(s):  
HAI DU ◽  
WEILI WU ◽  
ZAIXIN LU ◽  
YINFENG XU

The Steiner minimum tree and the minimum spanning tree are two important problems in combinatorial optimization. Let P denote a finite set of points, called terminals, in the Euclidean space. A Steiner minimum tree of P, denoted by SMT(P), is a network with minimum length to interconnect all terminals, and a minimum spanning tree of P, denoted by MST(P), is also a minimum network interconnecting all the points in P, however, subject to the constraint that all the line segments in it have to terminate at terminals. Therefore, SMT(P) may contain points not in P, but MST(P) cannot contain such kind of points. Let [Formula: see text] denote the n-dimensional Euclidean space. The Steiner ratio in [Formula: see text] is defined to be [Formula: see text], where Ls(P) and Lm(P), respectively, denote lengths of a Steiner minimum tree and a minimum spanning tree of P. The best previously known lower bound for [Formula: see text] in the literature is 0.615. In this paper, we show that [Formula: see text] for any n ≥ 2.


Author(s):  
JASON DEBLOIS

AbstractThe Delaunay tessellation of a locally finite subset of the hyperbolic space ℍnis constructed via convex hulls in ℝn+1. For finite and lattice-invariant sets it is proven to be a polyhedral decomposition, and versions (necessarily modified from the Euclidean setting) of the empty circumspheres condition and geometric duality with the Voronoi tessellation are proved. Some pathological examples of infinite, non lattice-invariant sets are exhibited.


10.37236/8565 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Ferenc Szöllősi ◽  
Patric R.J. Östergård

A finite set of vectors $\mathcal{X}$ in the $d$-dimensional Euclidean space $\mathbb{R}^d$ is called an $s$-distance set if the set of mutual distances between distinct elements of $\mathcal{X}$ has cardinality exactly $s$. In this paper we present a combined approach of isomorph-free exhaustive generation of graphs and Gröbner basis computation to classify the largest $3$-distance sets in $\mathbb{R}^4$, the largest $4$-distance sets in $\mathbb{R}^3$, and the largest $6$-distance sets in $\mathbb{R}^2$. We also construct new examples of large $s$-distance sets in $\mathbb{R}^d$ for $d\leq 8$ and $s\leq 6$, and independently verify several earlier results from the literature.


2019 ◽  
Vol 488 (1) ◽  
pp. 16-20
Author(s):  
A. V. Kel’manov ◽  
A. V. Pyatkin ◽  
V. I. Khandeev

We consider some problems of partitioning a finite set of N points in d-dimension Euclidean space into two clusters balancing the value of (1) the quadratic variance normalized by a cluster size, (2) the quadratic variance, and (3) the size-weighted quadratic variance. We have proved the NP-completeness of all these problems.


2017 ◽  
Vol 5 ◽  
Author(s):  
YUZURU INAHAMA ◽  
SETSUO TANIGUCHI

In this paper we prove a short time asymptotic expansion of a hypoelliptic heat kernel on a Euclidean space and a compact manifold. We study the ‘cut locus’ case, namely, the case where energy-minimizing paths which join the two points under consideration form not a finite set, but a compact manifold. Under mild assumptions we obtain an asymptotic expansion of the heat kernel up to any order. Our approach is probabilistic and the heat kernel is regarded as the density of the law of a hypoelliptic diffusion process, which is realized as a unique solution of the corresponding stochastic differential equation. Our main tools are S. Watanabe’s distributional Malliavin calculus and T. Lyons’ rough path theory.


1983 ◽  
Vol 93 (2) ◽  
pp. 271-274 ◽  
Author(s):  
W. J. R. Mitchell

We state and prove a theorem which characterizes piecewise linear homology manifolds of sufficiently large dimension among locally compact finite-dimensional absolute neighbourhood retracts (ANRs). The proof is inspired by Cannon's observation (3) that a piecewise linear homology manifold is a topological manifold away from a locally finite set, and uses Galewski and Stern's work on simplicial triangulations of topological manifolds, the Edwards–Cannon–Quinn characterization of topological manifolds and Siebenmann's work on ends (3, 6, 4, 13, 14, 15, 16). All these tools have suitable relative versions and so the theorem can be extended to the bounded case. However, the most satisfactory extension requires a classification of triangulations of homology manifolds up to concordance. This will be given in a subsequent paper and the bounded case will be postponed to that paper.


2016 ◽  
Vol 113 (12) ◽  
pp. 3152-3158 ◽  
Author(s):  
Yves F. Meyer

The goal of this paper is the construction of measures μ on Rn enjoying three conflicting but fortunately compatible properties: (i) μ is a sum of weighted Dirac masses on a locally finite set, (ii) the Fourier transform μ^ of μ is also a sum of weighted Dirac masses on a locally finite set, and (iii) μ is not a generalized Dirac comb. We give surprisingly simple examples of such measures. These unexpected patterns strongly differ from quasicrystals, they provide us with unusual Poisson's formulas, and they might give us an unconventional insight into aperiodic order.


1970 ◽  
Vol 22 (2) ◽  
pp. 235-241 ◽  
Author(s):  
M. A. Perles ◽  
G. T. Sallee

1. Recently a number of functions have been shown to satisfy relations on polytopes similar to the classic Euler relation. Much of this work has been done by Shephard, and an excellent summary of results of this type may be found in [11]. For such functions, only continuity (with respect to the Hausdorff metric) is required to assure that it is a valuation, and the relationship between these two concepts was explored in [8]. It is our aim in this paper to extend the results obtained there to illustrate the relationship between valuations and the Euler relation on cell complexes.To fix our notions, we will suppose that everything takes place in a given finite-dimensional Euclidean space X.A polytope is the convex hull of a finite set of points and will be referred to as a d-polytope if it has dimension d. Polytopes have faces of all dimensions from 0 to d – 1 and each of these is in turn a polytope. A k-dimensional face will be termed simply a k-face.


1989 ◽  
Vol 105 (3) ◽  
pp. 417-420 ◽  
Author(s):  
Mahmut Kuzucuoglu ◽  
Richard E. Phillips

We recall that a group G is an FC-group if for every x∈G the set of conjugates {xg|g∈G} is a finite set. Our interest here is with those groups G which are not FC groups while every proper subgroup of G is an FC-group: such groups are called minimal non-FC-groups. Locally finite minimal non-FC-groups with (G ≠ G′ are studied in [1] and the structure of these groups is reasonably well understood. In [2] Belyaev has shown that a perfect, locally finite, minimal non-FC-group is either a simple group or a p-group for some prime p. Here we make use of the results of [5] to refine the result of Belyaev and provide a positive answer to problem 5·1 of [11]; in particular, we prove the followingTheorem. There exists no simple, locally finite, minimal non-FC-group.


Sign in / Sign up

Export Citation Format

Share Document