Elliptic Kac–Sylvester Matrix from Difference Lamé Equation

Author(s):  
Jan Felipe van Diejen ◽  
Tamás Görbe
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Adisorn Kittisopaporn ◽  
Pattrawut Chansangiam ◽  
Wicharn Lewkeeratiyutkul

AbstractWe derive an iterative procedure for solving a generalized Sylvester matrix equation $AXB+CXD = E$ A X B + C X D = E , where $A,B,C,D,E$ A , B , C , D , E are conforming rectangular matrices. Our algorithm is based on gradients and hierarchical identification principle. We convert the matrix iteration process to a first-order linear difference vector equation with matrix coefficient. The Banach contraction principle reveals that the sequence of approximated solutions converges to the exact solution for any initial matrix if and only if the convergence factor belongs to an open interval. The contraction principle also gives the convergence rate and the error analysis, governed by the spectral radius of the associated iteration matrix. We obtain the fastest convergence factor so that the spectral radius of the iteration matrix is minimized. In particular, we obtain iterative algorithms for the matrix equation $AXB=C$ A X B = C , the Sylvester equation, and the Kalman–Yakubovich equation. We give numerical experiments of the proposed algorithm to illustrate its applicability, effectiveness, and efficiency.


2010 ◽  
Vol 7 (4) ◽  
pp. 479-483
Author(s):  
Yu-Peng Qiao ◽  
Hong-Sheng Qi ◽  
Dai-Zhan Cheng

2019 ◽  
Vol 19 (1) ◽  
pp. 147-163 ◽  
Author(s):  
Alwin Stegeman ◽  
Lieven De Lathauwer

AbstractThe problem is considered of approximately solving a system of univariate polynomials with one or more common roots and its coefficients corrupted by noise. The goal is to estimate the underlying common roots from the noisy system. Symbolic algebra methods are not suitable for this. New Rayleigh quotient methods are proposed and evaluated for estimating the common roots. Using tensor algebra, reasonable starting values for the Rayleigh quotient methods can be computed. The new methods are compared to Gauss–Newton, solving an eigenvalue problem obtained from the generalized Sylvester matrix, and finding a cluster among the roots of all polynomials. In a simulation study it is shown that Gauss–Newton and a new Rayleigh quotient method perform best, where the latter is more accurate when other roots than the true common roots are close together.


Sign in / Sign up

Export Citation Format

Share Document