An Appraisal of the 2001 Bhuj Earthquake (Mw 7.7, India) Source Zone: Fractal Dimension and b Value Mapping of the Aftershock Sequence

2012 ◽  
Vol 169 (12) ◽  
pp. 2127-2138 ◽  
Author(s):  
J. R. Kayal ◽  
Vishal Das ◽  
Uma Ghosh
2017 ◽  
Vol 88 (1) ◽  
pp. 315-325 ◽  
Author(s):  
WU Hao-Yu ◽  
LIU Hong-Fu ◽  
XU Wei-Jin ◽  
WANG Xia

1980 ◽  
Vol 70 (1) ◽  
pp. 223-241
Author(s):  
Larry Gedney ◽  
Steve Estes ◽  
Nirendra Biswas

abstract Since a series of moderate earthquakes near Fairbanks, Alaska in 1967, the “Fairbanks seismic zone” has maintained a consistently high level of seismicity interspersed with sporadic earthquake swarms. Five swarms occurring since 1970 demonstrate that tightly compacted centers of activity have tended to migrate away from the epicentral area of the 1967 earthquakes. Comparative b-coefficients of the first four swarms indicate that they occurred under different relative stress conditions than the last episode, which exhibited a higher b-value and was, in fact, a main shock of magnitude 4.6 with a rapidly decaying aftershock sequence. This last recorded sequence in February 1979 was an extension to greater depths along a lineal seismic zone whose first recorded activation occurred during a swarm two years earlier. Focal mechanism solutions indicate a north-south orientation of the greatest principal stress axis, σ1, in the area. A dislocation process related to crustal spreading between strands of a right-lateral fault, similar to that which has been inferred for southern California, is suggested.


1983 ◽  
Vol 73 (3) ◽  
pp. 813-829
Author(s):  
P. Yi-Fa Huang ◽  
N. N. Biswas

abstract This paper describes the characteristics of the Rampart seismic zone by means of the aftershock sequence of the Rampart earthquake (ML = 6.8) which occurred in central Alaska on 29 October 1968. The magnitudes of the aftershocks ranged from about 1.6 to 4.4 which yielded a b value of 0.96 ± 0.09. The locations of the aftershocks outline a NNE-SSW trending aftershock zone about 50 km long which coincides with the offset of the Kaltag fault from the Victoria Creek fault. The rupture zone dips steeply (≈80°) to the west and extends from the surface to a depth of about 10 km. Fault plane solutions for a group of selected aftershocks, which occurred over a period of 22 days after the main shock, show simultaneous occurrences of strike-slip and normal faults. A comparison of the trends in seismicity between the neighboring areas shows that the Rampart seismic zone lies outside the area of underthrusting of the lithospheric plate in southcentral and central Alaska. The seismic zone outlined by the aftershock sequence appears to represent the formation of an intraplate fracture caused by regional northwest compression.


1980 ◽  
Vol 70 (2) ◽  
pp. 559-570 ◽  
Author(s):  
R. A. Uhrhammer

abstract At 1705 UTC on August 6, 1979, a strong earthquake (ML = 5.9) occurred along the Calaveras fault zone south of Coyote Lake about 110 km southeast of San Francisco. This strong earthquake had an aftershock sequence of 31 events (2.4 ≦ ML ≦ 4.4) during August 1979. No foreshocks (ML ≧ 1.5) were observed in the 3 months prior to the main shock. The local magnitude (ML = 5.9) and the seismic moment (Mo = 6 × 1024 dyne-cm from the SH pulse) for the main shock were determined from the 100 × torsion and 3-component ultra-long period seismographs located at Berkeley. Local magnitudes are determined for the aftershocks from the maximum trace amplitudes on the Wood-Anderson torsion seismograms recorded at Berkeley (Δ ≊ 110 km). Temporal and spatial characteristics of the aftershock sequence are presented and discussed. Some key observations are: (1) the first six aftershocks (ML ≧ 2.4) proceed along the fault zone progressively to the south of the main shock; (2) all of the aftershocks (ML ≧ 2.4) to the south of the largest aftershock (ML = 4.4) have a different focal mechanism than the aftershocks to the north; (3) no aftershocks (ML ≧ 2.4) were observed significantly to the north of the main shock for the first 5 days of the sequence; and (4) the b-value (0.70 ± 0.17) for the aftershock sequence is not significantly different from the average b-value (0.88 ± 0.08) calculated for the Calaveras fault zone from 16 yr of data.


2020 ◽  
Vol 91 (5) ◽  
pp. 2843-2850 ◽  
Author(s):  
Kelian Dascher-Cousineau ◽  
Thorne Lay ◽  
Emily E. Brodsky

Abstract Recognizing earthquakes as foreshocks in real time would provide a valuable forecasting capability. In a recent study, Gulia and Wiemer (2019) proposed a traffic-light system that relies on abrupt changes in b-values relative to background values. The approach utilizes high-resolution earthquake catalogs to monitor localized regions around the largest events and distinguish foreshock sequences (reduced b-values) from aftershock sequences (increased b-values). The recent well-recorded earthquake foreshock sequences in Ridgecrest, California, and Maria Antonia, Puerto Rico, provide an opportunity to test the procedure. For Ridgecrest, our b-value time series indicates an elevated risk of a larger impending earthquake during the Mw 6.4 foreshock sequence and provides an ambiguous identification of the onset of the Mw 7.1 aftershock sequence. However, the exact result depends strongly on expert judgment. Monte Carlo sampling across a range of reasonable decisions most often results in ambiguous warning levels. In the case of the Puerto Rico sequence, we record significant drops in b-value prior to and following the largest event (Mw 6.4) in the sequence. The b-value has still not returned to background levels (12 February 2020). The Ridgecrest sequence roughly conforms to expectations; the Puerto Rico sequence will only do so if a larger event occurs in the future with an ensuing b-value increase. Any real-time implementation of this approach will require dense instrumentation, consistent (versioned) low completeness catalogs, well-calibrated maps of regionalized background b-values, systematic real-time catalog production, and robust decision making about the event source volumes to analyze.


2010 ◽  
Vol 57 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Sohini Roy ◽  
Uma Ghosh ◽  
Sugata Hazra ◽  
J. R. Kayal

1994 ◽  
Vol 84 (4) ◽  
pp. 1058-1074 ◽  
Author(s):  
Egill Hauksson

Abstract The (ML 5.8) Sierra Madre earthquake of 28 June 1991 occurred at a depth of 12 km under the San Gabriel Mountains of the central Transverse Ranges. Since at least 1932 this region had been quiescent for M ≧ 3. The mainshock focal mechanism derived from first-motion polarities exhibited almost pure thrust faulting, with a rake of 82° on a plane striking N62°E and dipping 50° to the north. The event appears to have occurred on the Clamshell-Sawpit fault, a splay of the Sierra Madre fault zone. The aftershock sequence following the mainshock occurred at a depth of 9 to 14 km and was deficient in small earthquakes, having a b value of 0.6. Twenty nine single-event focal mechanisms were determined for aftershocks of M > 1.5. The 4-km-long segment of the Clamshell-Sawpit fault that may have ruptured in the mainshock is outlined by several thrust focal mechanisms with an east-northeast-striking fault plane dipping to the north. To the west, several thrust aftershocks with east-striking nodal planes suggest some complexity in the aftershock faulting, such as a curved rupture surface. In addition, several strike-slip and normal faulting events occurred along the edges of the mainshock fault plane, indicating secondary tear faulting. The tectonic stress field driving the coexisting left-lateral strike-slip and thrust faults in the northern Los Angeles basin is north-south horizontal compression with vertical intermediate or minimum principal stress axis.


Sign in / Sign up

Export Citation Format

Share Document