Rampart seismic zone of central Alaska

1983 ◽  
Vol 73 (3) ◽  
pp. 813-829
Author(s):  
P. Yi-Fa Huang ◽  
N. N. Biswas

abstract This paper describes the characteristics of the Rampart seismic zone by means of the aftershock sequence of the Rampart earthquake (ML = 6.8) which occurred in central Alaska on 29 October 1968. The magnitudes of the aftershocks ranged from about 1.6 to 4.4 which yielded a b value of 0.96 ± 0.09. The locations of the aftershocks outline a NNE-SSW trending aftershock zone about 50 km long which coincides with the offset of the Kaltag fault from the Victoria Creek fault. The rupture zone dips steeply (≈80°) to the west and extends from the surface to a depth of about 10 km. Fault plane solutions for a group of selected aftershocks, which occurred over a period of 22 days after the main shock, show simultaneous occurrences of strike-slip and normal faults. A comparison of the trends in seismicity between the neighboring areas shows that the Rampart seismic zone lies outside the area of underthrusting of the lithospheric plate in southcentral and central Alaska. The seismic zone outlined by the aftershock sequence appears to represent the formation of an intraplate fracture caused by regional northwest compression.

1972 ◽  
Vol 62 (3) ◽  
pp. 699-719 ◽  
Author(s):  
A. López Arroyo ◽  
A. Udías

Abstract The earthquake of February 28, 1969, which occurred about 500 km west of the Strait of Gibraltar, was felt over the entire Iberian Peninsula, in a wide region of Morocco, and south to the Canary Islands. It had a long sequence of aftershocks continuing for at least 10 months, but, nevertheless, most of the energy seems to have been liberated in the main shock of which the mb was 7.4. The source mechanism solution indicates a fault plane striking N 67°W and dipping 68°SW, with motion principally of the strike-slip type. There also is some overthrusting. The horizontal extent of faulting is of the order of 90 km.


2020 ◽  
Author(s):  
Revathy M. Parameswaran ◽  
Ingi Th. Bjarnason ◽  
Freysteinn Sigmundsson

<p>The Reykjanes Peninsula (RP) is a transtensional plate boundary in southwest Iceland that marks the transition of the Mid-Atlantic Ridge (MAR) from the offshore divergent Reykjanes Ridge (RR) in the west to the South Iceland Seismic Zone (SISZ) in the east. The seismicity here trends ~N80°E in central RP and bends to ~N45°E at its western tip as it joins RR. Seismic surveys, geodetic studies, and recent GPS-based kinematic models indicate that the seismic zone is a collection of strike-slip and normal faults (e.g., Keiding et al., 2008). Meanwhile, the tectonic processes in the region also manifest as NE-SW trending volcanic fissures and normal faults, and N-S oriented dextral faults (e.g., Clifton and Kattenhorn, 2006). The largest of these fissure and normal-fault systems in RP is the Krísuvík-Trölladyngja volcanic system, which is a high-energy geothermal zone. The seismicity here predominantly manifests RP’s transtentional tectonics; however, also hosts triggered events such as those following the 17 June 2000 Mw6.5 earthquake in the SISZ (Árnadottir et al., 2004) ~80 km east of Krísuvík. Stress inversions of microearthquakes from 1997-2006 in the RP indicate that the current stress state is mostly strike-slip with increased normal component to the west, indicating that the seismicity is driven by plate diverging motion (Keiding et al., 2009). However, the geothermal system in Krísuvík is a potential secondary source for triggered seismicity and deformation. This study uses seismic and geodetic data to evaluate the activity in the Krísuvík-Trölladyngja volcanic system. The seismic data is used to identify specific areas of focused activity and evaluate variations in the stress field associated with plate motion and/or geothermal activity over space and time. The data used, within the time period 2007-2016, was collected by the the South Icelandic Lowland (SIL) seismic network operated and managed by the Iceland Meterological Office (IMO). Furthermore, variations in seismicity are compared to crustal deformation observed with TerraSAR-X images from 2009-2019. Crustal changes in the Krísuvík area are quantified to develop a model for corresponding deformation sources. These changes are then correlated with the stress-field variations determined with seismic analysis.</p>


1994 ◽  
Vol 84 (4) ◽  
pp. 1058-1074 ◽  
Author(s):  
Egill Hauksson

Abstract The (ML 5.8) Sierra Madre earthquake of 28 June 1991 occurred at a depth of 12 km under the San Gabriel Mountains of the central Transverse Ranges. Since at least 1932 this region had been quiescent for M ≧ 3. The mainshock focal mechanism derived from first-motion polarities exhibited almost pure thrust faulting, with a rake of 82° on a plane striking N62°E and dipping 50° to the north. The event appears to have occurred on the Clamshell-Sawpit fault, a splay of the Sierra Madre fault zone. The aftershock sequence following the mainshock occurred at a depth of 9 to 14 km and was deficient in small earthquakes, having a b value of 0.6. Twenty nine single-event focal mechanisms were determined for aftershocks of M > 1.5. The 4-km-long segment of the Clamshell-Sawpit fault that may have ruptured in the mainshock is outlined by several thrust focal mechanisms with an east-northeast-striking fault plane dipping to the north. To the west, several thrust aftershocks with east-striking nodal planes suggest some complexity in the aftershock faulting, such as a curved rupture surface. In addition, several strike-slip and normal faulting events occurred along the edges of the mainshock fault plane, indicating secondary tear faulting. The tectonic stress field driving the coexisting left-lateral strike-slip and thrust faults in the northern Los Angeles basin is north-south horizontal compression with vertical intermediate or minimum principal stress axis.


1981 ◽  
Vol 71 (2) ◽  
pp. 451-463
Author(s):  
B. A. Bolt ◽  
T. V. McEvilly ◽  
R. A. Uhrhammer

abstract At 19h00m09.46s UTC, on 24 January 1980, a strong earthquake (ML = 5.5) that caused a surprising amount of damage occurred north of Livermore Valley about 12 km to the southeast of Mt. Diablo, and was associated with surface rupture along the Greenville Fault. There was a foreshock (ML = 2.7) a minute and a half earlier and a sequence of 59 events (ML ≧ 2.5) in the ensuing 6 days. On 27 January at 02h33m35.96s, a larger magnitude earthquake occurred in the sequence (ML = 5.6). This second principal shock was located 14 km to the south of the first principal earthquake toward the southern end of the Greenville Fault. Preliminary estimates of the seismic moments of the two principal shocks are 5.3 × 1024 and 1.3 × 1024 dyne-cm, respectively. In addition to the lower seismic moment, the ML = 5.6 shock on 27 January exhibits a clearly focused radiation pattern, with large amplitudes toward the northeast. Field investigations after the first principal shock indicated surfaced rupture along the Greenville fault zone for at least 6 km, with both right-lateral strike-slip and some dip-slip motion with the northeast side up. Variable offsets on surface cracks suggested displacements of a few centimeters (with evidence of increases in some places after the second 27 January earthquake). There were eight earthquakes with ML ≧ 4.0 in the sequence up to 5 February 1980. No foreshocks near the Greenville Fault (ML ≧ 1.5) were observed by the University of California Seismographic Stations in the prior 3 months. Rapid deployment of field seismographs by a number of seismological organizations permitted precise locations and fault-plane solutions. Some results on seismicity are as follows. The rupture propagated over 15 km to the southeast along the Marsh Creek-Greenville faults on 24 January and stopped in the vicinity of Highway 580. This southern progression may have had some causal connection with the relatively high intensities reported near the southwest end of the Greenville Fault. The two principal shocks of the sequence have slight but significant differences in the fault-plane solutions; both are predominantly right-lateral strike-slip, but the strike of the northern one is N13°W, whereas the strike of the southern one is N39°W. This change in strike is not evident in the mapped strikes of the Marsh Creek and the Greenville faults. In contrast to the second principal earthquake, the first principal shock was followed by two others (ML > 4.0) in rapid succession, one 53 sec and the other 97 sec after. This repetition gave a relatively long duration to the shaking on 24 January, and was commented on in felt reports. It may explain the greater intensity reported in many localities on 24 January compared to 27 January. The b value (0.64 ± 0.13) for the sequence is somewhat lower than the b = 0.70 ± 0.17 for the recent Coyote Lake earthquake sequence on the Calaveras Fault on 5 August 1979. There are fewer earthquakes than normal in the range 3.0 < ML < 4.0 in the Greenville sequence.


1995 ◽  
Vol 38 (2) ◽  
Author(s):  
A. Amato ◽  
R. Azzara ◽  
A. Basili ◽  
C. Chiarabba ◽  
M. Cocco ◽  
...  

n this paper we describe the location and the fault plane solution of the December 13, 1990, Eastern Sicily earthquake (ML = 5.4), and of its aftershock sequence. Because the main shock location is not well constrained due to the geometry of the permanent National Seismic Network in this area, we used a "master event" algorithm to locate it in relation to a well located aftershock. The revised location is slightly offshore Eastern Sicily, 4.8 km north of the largest aftershock (ML = 4.6) that occurred on December 16, 1990. The main shock has a strike-slip mechanism, indicating SE-NW compression with either left lateral motion on a NS plane, or right lateral on an EW plane. Two days after the main event we deployed a local network of eight digital stations, that provided accurate locations of the aftershocks, and the estimate of source parameters for the strongest earthquake. We observed an unusual quiescence after the ML = 5.4 event, that lasted until December 16, when a ML = 4.6 earthquake occurred. The fault plane solution of this aftershock shows normal faulting on E-W trending planes. Between December 16 and January 6, 1991, a sequence of at least 300 aftershock" was recorded by the local network. The well located earthquakes define a small source region of approximately 5 x 2 x 5 km3, with hypocentral depths ranging between 15 and 20 km. The paucity of large aftershocks, the time gap between the main shock occurrence and the beginning of the aftershock sequence (3.5 days), their different focal mechanisms (strike-slip vs. normal), and the different stress drop between main shock and after- shock suggest that the ML = 5.4 earthquake is an isolated event. The sequence of aftershocks began with the ML = 4.6 event, which is probably linked to the main shock with a complex mechanism of stress redistribution after the main faulting episode.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brijesh K. Bansal ◽  
Kapil Mohan ◽  
Mithila Verma ◽  
Anup K. Sutar

AbstractDelhi region in northern India experiences frequent shaking due to both far-field and near-field earthquakes from the Himalayan and local sources, respectively. The recent M3.5 and M3.4 earthquakes of 12th April 2020 and 10th May 2020 respectively in northeast Delhi and M4.4 earthquake of 29th May 2020 near Rohtak (~ 50 km west of Delhi), followed by more than a dozen aftershocks, created panic in this densely populated habitat. The past seismic history and the current activity emphasize the need to revisit the subsurface structural setting and its association with the seismicity of the region. Fault plane solutions are determined using data collected from a dense network in Delhi region. The strain energy released in the last two decades is also estimated to understand the subsurface structural environment. Based on fault plane solutions, together with information obtained from strain energy estimates and the available geophysical and geological studies, it is inferred that the Delhi region is sitting on two contrasting structural environments: reverse faulting in the west and normal faulting in the east, separated by the NE-SW trending Delhi Hardwar Ridge/Mahendragarh-Dehradun Fault (DHR-MDF). The WNW-ESE trending Delhi Sargoda Ridge (DSR), which intersects DHR-MDF in the west, is inferred as a thrust fault. The transfer of stress from the interaction zone of DHR-MDF and DSR to nearby smaller faults could further contribute to the scattered shallow seismicity in Delhi region.


1987 ◽  
Vol 3 (3) ◽  
pp. 419-434 ◽  
Author(s):  
Randall A. White ◽  
David H. Harlow ◽  
Salvador Alvarez

The San Salvador earthquake of October 10, 1986 originated along the Central American volcanic chain within the upper crust of the Caribbean Plate. Results from a local seismograph network show a tectonic style main shock-aftershock sequence, with a magnitude, Mw, 5.6. The hypocenter was located 7.3 km below the south edge of San Salvador. The main shock ruptured along a nearly vertical plane toward the north-northeast. A main shock fault-plane solution shows a nearly vertical fault plane striking N32\sz\E, with left-lateral sense of motion. This earthquake is the second Central American volcanic chain earthquake documented with left-lateral slip on a fault perpendicular to the volcanic chain. During the 2 1/2 years preceeding the earthquake, minor microseismicity was noted near the epicenter, but we show that this has been common along the volcanic chain since at least 1953. San Salvador was previously damaged by a volcanic chain earthquake on May 3, 1965. The locations of six foreshocks preceding the 1965 shock show a distinctly WNW-trending distribution. This observation, together with the distribution of damage and a fault-plane solution, suggest that right-lateral slip occurred along a fault sub-parallel with Central American volcanic chain. We believe this is the first time such motion has been documented along the volcanic chain. This earthquake was also unusual in that it was preceded by a foreshock sequence more energetic than the aftershock sequence. Earlier this century, on June 08, 1917, an Ms 6.4 earthquake occurred 30 to 40 km west of San Salvador Volcano. Only 30 minutes later, an Ms 6.3 earthquake occurred, centered at the volcano, and about 35 minutes later the volcano erupted. In 1919 an Ms 6 earthquake occurred, centered at about the epicenter of the 1986 earthquake. We conclude that the volcanic chain is seismically very active with variable styles of seismicity.


1970 ◽  
Vol 60 (5) ◽  
pp. 1669-1699 ◽  
Author(s):  
Leonardo Seeber ◽  
Muawia Barazangi ◽  
Ali Nowroozi

Abstract This paper demonstrates that high-gain, high-frequency portable seismographs operated for short intervals can provide unique data on the details of the current tectonic activity in a very small area. Five high-frequency, high-gain seismographs were operated at 25 sites along the coast of northern California during the summer of 1968. Eighty per cent of 160 microearthquakes located in the Cape Mendocino area occurred at depths between 15 and 35 km in a well-defined, horizontal seismic layer. These depths are significantly greater than those reported for other areas along the San Andreas fault system in California. Many of the earthquakes of the Cape Mendocino area occurred in sequences that have approximately the same magnitude versus length of faulting characteristics as other California earthquakes. Consistent first-motion directions are recorded from microearthquakes located within suitably chosen subdivisions of the active area. Composite fault plane solutions indicate that right-lateral movement prevails on strike-slip faults that radiate from Cape Mendocino northwest toward the Gorda basin. This is evidence that the Gorda basin is undergoing internal deformation. Inland, east of Cape Mendocino, a significant component of thrust faulting prevails for all the composite fault plane solutions. Thrusting is predominant in the fault plane solution of the June 26 1968 earthquake located along the Gorda escarpement. In general, the pattern of slip is consistent with a north-south crustal shortening. The Gorda escarpment, the Mattole River Valley, and the 1906 fault break northwest of Shelter Cove define a sharp bend that forms a possible connection between the Mendocino escarpment and the San Andreas fault. The distribution of hypocenters, relative travel times of P waves, and focal mechanisms strongly indicate that the above three features are surface expressions of an important structural boundary. The sharp bend in this boundary, which is concave toward the southwest, would tend to lock the dextral slip along the San Andreas fault and thus cause the regional north-south compression observed at Cape Mendocino. The above conclusions support the hypothesis that dextral strike-slip motion along the San Andreas fault is currently being taken up by slip along the Mendocino escarpment as well as by slip along northwest trending faults in the Gorda basin.


1980 ◽  
Vol 70 (1) ◽  
pp. 223-241
Author(s):  
Larry Gedney ◽  
Steve Estes ◽  
Nirendra Biswas

abstract Since a series of moderate earthquakes near Fairbanks, Alaska in 1967, the “Fairbanks seismic zone” has maintained a consistently high level of seismicity interspersed with sporadic earthquake swarms. Five swarms occurring since 1970 demonstrate that tightly compacted centers of activity have tended to migrate away from the epicentral area of the 1967 earthquakes. Comparative b-coefficients of the first four swarms indicate that they occurred under different relative stress conditions than the last episode, which exhibited a higher b-value and was, in fact, a main shock of magnitude 4.6 with a rapidly decaying aftershock sequence. This last recorded sequence in February 1979 was an extension to greater depths along a lineal seismic zone whose first recorded activation occurred during a swarm two years earlier. Focal mechanism solutions indicate a north-south orientation of the greatest principal stress axis, σ1, in the area. A dislocation process related to crustal spreading between strands of a right-lateral fault, similar to that which has been inferred for southern California, is suggested.


1976 ◽  
Vol 66 (6) ◽  
pp. 1931-1952
Author(s):  
Donald J. Stierman ◽  
William L. Ellsworth

abstract The ML 6.0 Point Mugu, California earthquake of February 21, 1973 and its aftershocks occurred within the complex fault system that bounds the southern front of the Transverse Ranges province of southern California. P-wave fault plane solutions for 51 events include reverse, strike slip and normal faulting mechanisms, indicating complex deformation within the 10-km broad fault zone. Hypocenters of 141 aftershocks fail to delineate any single fault plane clearly associated with the main shock rupture. Most aftershocks cluster in a region 5 km in diameter centered 5 km from the main shock hypocenter and well beyond the extent of fault rupture estimated from analysis of body-wave radiation. Strain release within the imbricate fault zone was controlled by slip on preexisting planes of weakness under the influence of a NE-SW compressive stress.


Sign in / Sign up

Export Citation Format

Share Document