scholarly journals Odd and Even Major Indices and One-Dimensional Characters for Classical Weyl Groups

2020 ◽  
Vol 24 (4) ◽  
pp. 809-835
Author(s):  
Francesco Brenti ◽  
Paolo Sentinelli

Abstract We define and study odd and even analogues of the major index statistics for the classical Weyl groups. More precisely, we show that the generating functions of these statistics, twisted by the one-dimensional characters of the corresponding groups, always factor in an explicit way. In particular, we obtain odd and even analogues of Carlitz’s identity, of the Gessel–Simion Theorem, and a parabolic extension, and refinement, of a result of Wachs.

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Riccardo Biagioli ◽  
Fabrizio Caselli

International audience Projective reflection groups have been recently defined by the second author. They include a special class of groups denoted G(r,p,s,n) which contains all classical Weyl groups and more generally all the complex reflection groups of type G(r,p,n). In this paper we define some statistics analogous to descent number and major index over the projective reflection groups G(r,p,s,n), and we compute several generating functions concerning these parameters. Some aspects of the representation theory of G(r,p,s,n), as distribution of one-dimensional characters and computation of Hilbert series of some invariant algebras, are also treated. Les groupes de réflexions projectifs ont été récemment définis par le deuxième auteur. Ils comprennent une classe spéciale de groupes notée G(r,p,s,n), qui contient tous les groupes de Weyl classiques et plus généralement tous les groupes de réflexions complexes du type G(r,p,n). Dans ce papier on définit des statistiques analogues au nombre de descentes et à l'indice majeur pour les groupes G(r,p,s,n), et on calcule plusieurs fonctions génératrices. Certains aspects de la théorie des représentations de G(r,p,s,n), comme la distribution des caractères linéaires et le calcul de la série de Hilbert de quelques algèbres d'invariants, sont aussi abordés.


1976 ◽  
Vol 13 (1) ◽  
pp. 169-175 ◽  
Author(s):  
Saroj Dua ◽  
Shobha Khadilkar ◽  
Kanwar Sen

The paper deals with the one-dimensional modified random walk in the presence of partially reflecting barriers at a and –b (a, b > 0). The simple one-dimensional random walk on a line is the motion-record of a particle which may extend over (–∞, + ∞) or be restricted to a portion of it by absorbing and/or reflecting barriers. Here we introduce the possibility of a particle staying put along with its moving a unit step to the right or to the left and find the bivariate generating functions of the probabilities of a particle reaching m (0 <m <a) under different conditions.


10.37236/1879 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
Dominique Foata ◽  
Guo-Niu Han

As for the symmetric group of ordinary permutations there is also a statistical study of the group of signed permutations, that consists of calculating multivariable generating functions for this group by statistics involving record values and the length function. Two approaches are here systematically explored, using the flag-major index on the one hand, and the flag-inversion number on the other hand. The MacMahon Verfahren appears as a powerful tool throughout.


1976 ◽  
Vol 13 (01) ◽  
pp. 169-175
Author(s):  
Saroj Dua ◽  
Shobha Khadilkar ◽  
Kanwar Sen

The paper deals with the one-dimensional modified random walk in the presence of partially reflecting barriers at a and –b (a, b &gt; 0). The simple one-dimensional random walk on a line is the motion-record of a particle which may extend over (–∞, + ∞) or be restricted to a portion of it by absorbing and/or reflecting barriers. Here we introduce the possibility of a particle staying put along with its moving a unit step to the right or to the left and find the bivariate generating functions of the probabilities of a particle reaching m (0 &lt;m &lt;a) under different conditions.


2008 ◽  
Vol 67 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Stefano Passini

The relation between authoritarianism and social dominance orientation was analyzed, with authoritarianism measured using a three-dimensional scale. The implicit multidimensional structure (authoritarian submission, conventionalism, authoritarian aggression) of Altemeyer’s (1981, 1988) conceptualization of authoritarianism is inconsistent with its one-dimensional methodological operationalization. The dimensionality of authoritarianism was investigated using confirmatory factor analysis in a sample of 713 university students. As hypothesized, the three-factor model fit the data significantly better than the one-factor model. Regression analyses revealed that only authoritarian aggression was related to social dominance orientation. That is, only intolerance of deviance was related to high social dominance, whereas submissiveness was not.


2011 ◽  
Vol 35 (1) ◽  
pp. 15-27
Author(s):  
Zoran Ivić ◽  
Željko Pržulj

Adiabatic large polarons in anisotropic molecular crystals We study the large polaron whose motion is confined to a single chain in a system composed of the collection of parallel molecular chains embedded in threedimensional lattice. It is found that the interchain coupling has a significant impact on the large polaron characteristics. In particular, its radius is quite larger while its effective mass is considerably lighter than that estimated within the one-dimensional models. We believe that our findings should be taken into account for the proper understanding of the possible role of large polarons in the charge and energy transfer in quasi-one-dimensional substances.


1983 ◽  
Vol 4 ◽  
pp. 297-297
Author(s):  
G. Brugnot

We consider the paper by Brugnot and Pochat (1981), which describes a one-dimensional model applied to a snow avalanche. The main advance made here is the introduction of the second dimension in the runout zone. Indeed, in the channelled course, we still use the one-dimensional model, but, when the avalanche spreads before stopping, we apply a (x, y) grid on the ground and six equations have to be solved: (1) for the avalanche body, one equation for continuity and two equations for momentum conservation, and (2) at the front, one equation for continuity and two equations for momentum conservation. We suppose the front to be a mobile jump, with longitudinal velocity varying more rapidly than transverse velocity.We solve these equations by a finite difference method. This involves many topological problems, due to the actual position of the front, which is defined by its intersection with the reference grid (SI, YJ). In the near future our two directions of research will be testing the code on actual avalanches and improving it by trying to make it cheaper without impairing its accuracy.


Sign in / Sign up

Export Citation Format

Share Document