Novel approach of multi-targeted thiazoles and thiazolidenes toward anti-inflammatory and anticancer therapy—dual inhibition of COX-2 and 5-LOX enzymes

Author(s):  
Jaismy Jacob P ◽  
Manju S L
2015 ◽  
Vol 97 ◽  
pp. 104-123 ◽  
Author(s):  
Palwinder Singh ◽  
Parteek Prasher ◽  
Parvirti Dhillon ◽  
Rajbir Bhatti

2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2021 ◽  
Vol 11 (13) ◽  
pp. 6055
Author(s):  
Akhtar Ali ◽  
En-Hyung Kim ◽  
Jong-Hyun Lee ◽  
Kang-Hyun Leem ◽  
Shin Seong ◽  
...  

Prolonged inflammation results in chronic diseases that can be associated with a range of factors. Medicinal plants and herbs provide synergistic benefits based on the interaction of multiple phytochemicals. The dried root of Scutellaria baicalensis Georgi and its compounds possess anti-inflammatory, anti-oxidative, and anticancer effects. Processing is a traditional method to achieve clinical benefits by improving therapeutic efficacy and lowering toxicity. In this study, we investigated the anti-inflammatory and anti-oxidant effect of processed Scutellaria baicalensis Georgi extract (PSGE) against lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Data using Griess assay and ELISA showed that PSGE decreased nitric oxide and prostaglandin E2 (PGE2) levels against LPS. PSGE treatment up-regulated 15-hydroxyprostaglandin dehydrogenase (PGDH), while cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 expression did not change. Interestingly, PGE2 inhibition was regulated by prostaglandin catabolic enzyme 15-PGDH rather than COX-2/mPGES-1, enzymes essential for PGE2 synthesis. Additionally, PSGE-suppressed LPS-induced IL-6 and TNF-α production through NF-κB signaling. NF-κB release from an inactive complex was inhibited by HO-1 which blocked IκBα phosphorylation. The ROS levels lowered by PSGE were measured with the H2DCFDA probe. PSGE activated NRF2 signaling and increased antioxidant Hmox1, Nqo1, and Txn1 gene expression, while reducing KEAP1 expression. In addition, pharmacological inhibition of HO-1 confirmed that the antioxidant enzyme induction by PSGE was responsible for ROS reduction. In conclusion, PSGE demonstrated anti-inflammatory and anti-oxidant effects due to NRF2/HO-1-mediated NF-κB and ROS inhibition.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1103.2-1103
Author(s):  
C. Edenius ◽  
G. Ekström ◽  
J. Kolmert ◽  
R. Morgenstern ◽  
P. Stenberg ◽  
...  

Background:Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the formation prostaglandin (PG) E2from cyclooxygenase derived PGH2(1, 2). Inhibition of mPGES-1 leads to reduction of pro-inflammatory PGE2, while in vessels there is a concomitant increase of vasoprotective prostacyclin (PGI2) via shunting of PGH2(3,4). Apart from relieving symptoms in experimental animal models of inflammation, inhibitors of mPGES-1 cause relaxation of human medium sized arteries(4)and resistance arteries(5). The prostaglandin profile following mPGES-1 inhibition, explains the anti-inflammatory effects and also opens for the possibility of treating inflammatory diseases with concomitant vasculopathies. GS-248 is a potent and selective inhibitor of mPGES-1 exhibiting sub-nanomolar IC50in human whole bloodex vivo.Objectives:To evaluate safety, tolerability, pharmacokinetics and pharmacodynamics of GS-248.Methods:Healthy males and females (age 18–73 years) were included in the study. Six cohorts were administrated single oral doses of 1-300mg GS-248 (n=36) or placebo (n=12), three cohorts were administered once daily doses of 20-180mg GS-248 (n=18) or placebo (n=12) over ten days. In addition, 8 subjects were treated in a separate cohort with 200mg celecoxib bid for ten days. Blood samples were drawn for measurement of GS-248 exposure and production of PGE2after LPS incubationex vivo. The content of PGE2and PGI2metabolites was measured in urine. All analyses were performed by LC-MS/MS.Results:GS-248 was safe and well tolerated at all tested dose levels. Maximum plasma concentration was achieved 1 - 2.5 hours after dosing, and half-life was about 10 hours. Induced PGE2formationex vivo,catalyzed by mPGES-1, was completely inhibited for 24 hours after a single low dose (40mg) of GS-248. In urine, GS-248 dose-dependently reduced the excretion of PGE2metabolite by more than 50% whereas the excretion of PGI2metabolite increased more than twice the baseline levels. In the celecoxib cohort urinary metabolites of both PGE2and PGI2were reduced with approx 50%.Conclusion:GS-248 at investigated oral doses was safe and well tolerated. There was a sustained inhibition of LPS induced PGE2formation in whole blood. In urine, there was a metabolite shift showing reduced PGE2and increased PGI2, while celecoxib reduced both PGE2and PGI2metabolites. This suggests that selective inhibition of mPGES-1 results in systemic shunting of PGH2to PGI2formation, leading to anti-inflammatory and vasodilatory effects, while preventing platelet activation. The results warrant further evaluation of GS-248 in inflammatory conditions with vasculopathies such as Digital Ulcers and Raynaud’s Phenomenon in Systemic Sclerosis.References:[1]Korotkova M, Jakobsson PJ. Persisting eicosanoid pathways in rheumatic diseases. Nat Rev Rheumatol. 2014;10:229-41[2]Bergqvist F, Morgenstern R, Jakobsson PJ. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat. 2019;147:106383[3]Kirkby NS, et al. Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis. Cardiovasc Res. 2020[4]Ozen G, et al. Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI2: a safer alternative to COX-2 inhibition. Br J Pharmacol. 2017;174:4087-98[5]Larsson K, et al. Biological characterization of new inhibitors of microsomal PGE synthase-1 in preclinical models of inflammation and vascular tone. Br J Pharmacol. 2019;176:4625-38Disclosure of Interests:Charlotte Edenius Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Gunilla Ekström Shareholder of: Gesynta Pharma, Consultant of: Gesynta Pharma,, Johan Kolmert Consultant of: Gesynta Pharma,, Ralf Morgenstern Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Patric Stenberg Shareholder of: Gesynta Pharma, Employee of: Gesynta Pharma, Per-Johan Jakobsson Shareholder of: Gesynta Pharma, Grant/research support from: Gesynta Pharma, AstraZeneca,, Göran Tornling Shareholder of: Gesynta Pharma, Vicore Pharma,, Consultant of: Gesynta Pharma, Vicore Pharma, AnaMar


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1433
Author(s):  
Ok-Hyeon Kim ◽  
Jun-Hyung Park ◽  
Jong-In Son ◽  
Ok-Ja Yoon ◽  
Hyun-Jung Lee

Suitable scaffolds with appropriate mechanical and biological properties can improve mesenchymal stromal cell (MSC) therapy. Because silk fibroins (SFs) are biocompatible materials, they were electrospun and applied as scaffolds for MSC therapy. Consequently, interferon (IFN)-primed human bone marrow MSCs on SF nanofibers were administered into a polymicrobial sepsis murine model. The IL-6 level gradually decreased from 40 ng/mL at 6 h after sepsis to 35 ng/mL at 24 h after sepsis. The IL-6 level was significantly low as 5 ng/mL in primed MSCs on SF nanofibers, and 15 ng/mL in primed MSCs on the control surface. In contrast to the acute response, inflammation-related factors, including HO-1 and COX-2 in chronic liver tissue, were effectively inhibited by MSCs on both SF nanofibers and the control surface at the 5-day mark after sepsis. An in vitro study indicated that the anti-inflammatory function of MSCs on SF nanofibers was mediated through enhanced COX-2-PGE2 production, as indomethacin completely abrogated PGE2 production and decreased the survival rate of septic mice. Thus, SF nanofiber scaffolds potentiated the anti-inflammatory and immunomodulatory functions of MSCs, and were beneficial as a culture platform for the cell therapy of inflammatory disorders.


2021 ◽  
Vol 89 (2) ◽  
pp. 22
Author(s):  
Mariia Mishchenko ◽  
Sergiy Shtrygol’ ◽  
Andrii Lozynskyi ◽  
Semen Khomyak ◽  
Volodymyr Novikov ◽  
...  

Neuroinflammation is an integral part of epilepsy pathogenesis and other convulsive conditions, and non-steroidal anti-inflammatory drugs (NSAIDs) present a potent tool for the contemporary search and design of novel anticonvulsants. In the present paper, evaluation of the anticonvulsant activity of the potential NSAID dual COX-2/5-LOX inhibitor darbufelone methanesulfonate using an scPTZ model in mice in dose 100 mg/kg is reported. Darbufelone possesses anticonvulsant properties in the scPTZ model and presents interest for in-depth studies as a possible anticonvulsant multi-target agent with anti-inflammatory activity. The series of 4-thiazolidinone derivatives have been synthesized following the analogue-based drug design and hybrid-pharmacophore approach using a darbufelone matrix. The synthesized derivatives showed a significant protection level for animals in the scPTZ model and are promising compounds for the design of potential anticonvulsants with satisfactory drug-like parameters.


Sign in / Sign up

Export Citation Format

Share Document