Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs

2003 ◽  
Vol 38 (7-8) ◽  
pp. 645-659 ◽  
Author(s):  
Caroline Charlier ◽  
Catherine Michaux
2020 ◽  
Vol 2 (1) ◽  
pp. 106-110
Author(s):  
Rilianda Abelira

Osteoartritis (OA) merupakan salah satu penyakit penyakit degeneratif atau geriatri yang disebabkan adanya inflamasi yang melibatkan kartilago, lapisan sendi, ligamen, dan tulang yang akibatnya dapat menyebabkan nyeri dan kekakuan pada sendi. Epidemiologi OA di didunia sekitar 15% dengan usia diatas 65-75 dan diperkirakan pada tahun 2020 penderita osteoarthritis akan meningkat 11,6 juta penderita. Kejadian OA di Indonesia dari tahun 1990 hingga 2010 telah mengalami peningkatan sebanyak 44,2% dan berdasarkan usia di Indonesia cukup tinggi dengan 65% pada usia tua (lansia) atau lebih dari 61 tahun. Pengobatan secara farmakologis untuk OA dengan menggunakan Obat Anti Inflamasi Non-Steroid (OAINS) salah satu contohnya adalah meloksikam. Namun, efek samping penggunaan OAINS dapat menimbulkan beberapa masalah seperti timbulnya ulkus peptikum dan gangguan pencernaan. Hal ini menyebabkan sedang dikembangkannya pengobatan herbal untuk OA yang harapannya dapat menjadi pengobatan utama dalam mengatasi OA dengan menggunakan kurkumin. Kurkumin berperan sebagai antiinflamasi dalam kunyit putih dengan menurunkan aktivitas cyclooxygenase 2(COX-2), lipoxygenase dan menghambat produksi sitokin seperti TNF-α, interleukin (IL). Osteoarthritis (OA) is a degenerative or geriatric disease that is caused by inflammation involving cartilages, joint lining, ligaments, and bones which can cause pain and stiffness in the joints. Epidemiology of OA in the world around 15% with ages above 65-75 and it is estimated in 2020, osteoarthritis will increase by 11.6 million. The incidence of OA in Indonesia from 1990 to 2010 has increased by 44.2% and by age in Indonesia is quite high with 65% in old age (elderly) or more than 61 years. Treatment for OA is using non-steroidal anti-inflammatory drugs (NSAIDs), such as meloxicam. However, side effects of NSAID use can cause several problems such as the emergence of peptic ulcer and digestive disorders. This has led to the development of herbal treatments for OA which hopes to become the main treatment in overcoming OA by using curcumin. Curcumin acts as an anti-inflammatory in white turmeric by reducing the activity of cyclooxygenase 2 (COX-2), lipoxygenase and inhibiting the production of cytokines such as TNF-α, interleukin (IL).


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hongsik Cho ◽  
Andrew Walker ◽  
Jeb Williams ◽  
Karen A. Hasty

Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-αwas incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxibin vivowas investigated using a posttraumatic OA (PTOA) mouse model.In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 productionin vitroand that celecoxib may demonstrate beneficial effects on anabolic metabolismin vivo.


2012 ◽  
Vol 23 (6) ◽  
pp. 621-628 ◽  
Author(s):  
Maria Fernanda Santos Peres ◽  
Fernanda Vieira Ribeiro ◽  
Karina Gonzalez Silvério Ruiz ◽  
Francisco Humberto Nociti-Jr ◽  
Enilson Antônio Sallum ◽  
...  

The aim of the present study was to compare the pre-emptive use of a cyclooxygenase-2 (COX-2) inhibitor with a well established steroidal anti-inflammatory drug for pain and edema relief following periodontal surgery for crown lengthening. Thirty patients requiring periodontal surgery were randomly assigned to receive one of the following medications: selective COX-2 inhibitor or steroidal anti-inflammatory drug, 60 min before the surgical procedure. To examine patient anxiety, a Corah's dental anxiety scale was applied before surgery. Using a visual analog scale, the extent of pain/discomfort during the trans-operative period and immediately after the surgery was measured. Additionally, intensity of pain/discomfort and edema were examined 4, 8, 12 and 24 h postoperatively. With regard to anxiety, no statistical differences between the groups were observed (p>0.05). With respect to the extent of pain/discomfort during the trans-operative, immediate and late postoperative period, data demonstrated no significant differences (p>0.05) between the COX-2 inhibitor and steroidal groups. With regard to edema, intragroup analysis did not reveal any statistically significant difference (p>0.05) during the 24 h following surgery in either group. In conclusion, both anti-inflammatory drugs presented a similar potential for pain and edema relief following periodontal surgery.


Author(s):  
Jennifer S. Chen ◽  
Mia Madel Alfajaro ◽  
Ryan D. Chow ◽  
Jin Wei ◽  
Renata B. Filler ◽  
...  

Abstract Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). As PGs play diverse biological roles in homeostasis and inflammatory responses, inhibiting PG production with NSAIDs could affect COVID-19 pathogenesis in multiple ways, including: (1) altering susceptibility to infection by modifying expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2; (2) regulating replication of SARS-CoV-2 in host cells; and (3) modulating the immune response to SARS-CoV-2. Here, we investigate these potential roles. We demonstrate that SARS-CoV-2 infection upregulates COX-2 in diverse human cell culture and mouse systems. However, suppression of COX-2 by two commonly used NSAIDs, ibuprofen and meloxicam, had no effect on ACE2 expression, viral entry, or viral replication. In contrast, in a mouse model of SARS-CoV-2 infection, NSAID treatment reduced production of pro-inflammatory cytokines and impaired the humoral immune response to SARS-CoV-2 as demonstrated by reduced neutralizing antibody titers. Our findings indicate that NSAID treatment may influence COVID-19 outcomes by dampening the inflammatory response and production of protective antibodies rather than modifying susceptibility to infection or viral replication. Importance Public health officials have raised concerns about the use of nonsteroidal anti-inflammatory drugs (NSAIDs) for treating symptoms of coronavirus disease 2019 (COVID-19). NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which are critical for the generation of prostaglandins – lipid molecules with diverse roles in homeostasis and inflammation. Inhibition of prostaglandin production by NSAIDs could therefore have multiple effects on COVID-19 pathogenesis. Here, we demonstrate that NSAID treatment reduced both the antibody and pro-inflammatory cytokine response to SARS-CoV-2 infection. The ability of NSAIDs to modulate the immune response to SARS-CoV-2 infection has important implications for COVID-19 pathogenesis in patients. Whether this occurs in humans and whether it is beneficial or detrimental to the host remains an important area of future investigation. This also raises the possibility that NSAIDs may alter the immune response to SARS-CoV-2 vaccination.


2017 ◽  
Vol 95 (3) ◽  
pp. 222-227
Author(s):  
O. N. Sulaieva ◽  
J. L. Wallace

Despite the introduction of anti-inflammatory drugs that selectively inhibit cyclo-oxygenase-2 (COX-2), and potent inhibitors of gastric acid secretion, the gastrointestinal adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs) remain a significant clinical problem. Combined use of antisecretory drugs and COX-2 inhibitors is helpful to limit the damage in the proximal gastrointestinal tract (stomach and duodenum), but it increases the risk of injury of small intestine and colon. It was proven that proton pump inhibitors and H2 receptor antagonists significantly worsen NSAID-induced small intestinal damage and microbiota balance. Nowadays, there is no proven effective preventative or curative treatment for NSAID-induced enteropathy. The new strategy of gastrointestinal protection is based on the discovery of endogenous cytoprotective molecules such as hydrogen sulfide (H2S). H2S is a gaseous mediator that produces strong cytoprotective and antioxidant effect on the gastrointestinal tract. The role of H2S in promoting mucosal integrity, healing of tissue injury and resolution of inflammation has been well documented. In addition, H2S stimulates productions of other cytoprotective molecules including prostaglandins, carbon monoxide and nitric oxide. Nowadays, the new generation of H2S-releasing non-steroidal anti-inflammatory drugs is developed and tested in clinical trials. H2S-NSAIDs possess enhanced anti-inflammatory activity and high gastrointestinal safety.


Sign in / Sign up

Export Citation Format

Share Document