Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.)

2006 ◽  
Vol 113 (4) ◽  
pp. 753-766 ◽  
Author(s):  
X. Q. Huang ◽  
S. Cloutier ◽  
L. Lycar ◽  
N. Radovanovic ◽  
D. G. Humphreys ◽  
...  
2001 ◽  
Vol 52 (12) ◽  
pp. 1267 ◽  
Author(s):  
K. Mrva ◽  
D. J. Mares

Mapping of the late maturity α-amylase (LMA) gene using quantitative trait locus (QTL) analysis represents an important step in identification of potential molecular markers that would greatly improve efficiency and accuracy of screening for LMA. QTL controlling the expression of LMA in wheat were detected in a doubled haploid (DH) cross/population derived from wheat (Triticum aestivum L. em. Thell) cultivars Cranbrook (LMA source) and Halberd (non-LMA). The DH population and parents were sown in replicated trials at Narrabri with sowing times differing by 2 weeks. Cool temperature treatment of detached tillers was used to induce expression of LMA in lines carrying the defect. The number of grains in ripe, treated tillers that contained high pI (malt, germination type) α-amylase isozymes was measured using an ELISA antibody kit highly specific for high pI isozymes. QTL analyses were conducted separately for each sowing, but results from both sowings were consistent and indicated that there was a highly significant (P < 0.001) QTL on the long arm of chromosome 7B (accounting for 31% of the variation in the first experiment), with Cranbrook contributing the higher value allele. A second QTL that accounted for 13% of the variation was found close to the centromere on chromosome 3B. Although it was less important than the QTL on 7B it was nevertheless still significant (P < 0.05).


Genome ◽  
2009 ◽  
Vol 52 (8) ◽  
pp. 701-715 ◽  
Author(s):  
R. Raman ◽  
H. Allen ◽  
S. Diffey ◽  
H. Raman ◽  
P. Martin ◽  
...  

Selection of wheat germplasm for a range of quality traits has been a challenging exercise because of the cost of testing, the variation within testing data, and a poor understanding of the underlying genetics. The objective of this study was to identify quantitative trait loci (QTLs) underlying quality traits in wheat. A doubled haploid population comprising 190 lines from Chara/WW2449 was grown in two different environments and evaluated for various quality traits. A molecular map comprising 362 markers based upon simple sequence repeat, sequence tagged microsatellite, glutenin, and DArT loci was constructed and subsequently exploited to identify QTLs using a whole-genome approach. Fifteen QTLs that were consistent in the two different environments were identified for thousand kernel mass, grain protein content, milling yield, flour protein content, flour colour, flour water absorption, dough development time, dough strength (extensograph height and resistance at 5 cm), and dough extensibility (extensograph length) using the whole genome average interval mapping approach. The amount of genetic variation explained by individual QTLs ranged from 3% to 49%. A number of QTLs associated with dough strength, dough extensibility, dough development time, and flour water absorption were located close to the glutenin Glu-B1 locus on chromosome 1B. Identification of the chromosomal location and effect of the QTLs influencing wheat quality may hasten the development of superior wheats for target markets via marker-assisted selection.


Genome ◽  
2011 ◽  
Vol 54 (6) ◽  
pp. 517-527 ◽  
Author(s):  
Bahram Heidari ◽  
Badraldin Ebrahim Sayed-Tabatabaei ◽  
Ghodratollah Saeidi ◽  
Michael Kearsey ◽  
Kazuhiro Suenaga

A doubled haploid (DH) population derived from a cross between the Japanese cultivar ‘Fukuho-kumogi’ and the Israeli wheat line ‘Oligoculm’ was used to map genome regions involved in the expression of grain yield, yield components, and spike features in wheat (Triticum aestivum L). A total of 371 markers (RAPD, SSR, RFLP, AFLP, and two morphological traits) were used to construct the linkage map that covered 4190 cM of wheat genome including 28 linkage groups. The results of composite interval mapping for all studied traits showed that some of the quantitative trait loci (QTL) were stable over experiments conducted in 2004 and 2005. The major QTL located in the Hair–Xpsp2999 interval on chromosome 1A controlled the expression of grains/spike (R2 = 12.9% in 2004 and 22.4% in 2005), grain weight/spike (R2 = 21.4% in 2004 and 15.8% in 2005), and spike number (R2 = 15.6% in 2004 and 5.4% in 2005). The QTL for grain yield located on chromosomes 6A, 6B, and 6D totally accounted for 27.2% and 31.7% of total variation in this trait in 2004 and 2005, respectively. Alleles inherited from ‘Oligoculm’ increased the length of spikes and had decreasing effects on spike number. According to the data obtained in 2005, locus Xgwm261 was associated with a highly significant spike length QTL (R2 = 42.33%) and also the major QTL for spikelet compactness (R2 = 26.1%).


Genome ◽  
2000 ◽  
Vol 43 (3) ◽  
pp. 487-494 ◽  
Author(s):  
P Sourdille ◽  
J W Snape ◽  
T Cadalen ◽  
G Charmet ◽  
N Nakata ◽  
...  

The genetic basis of heading time in wheat (Triticum aestivum L.) was investigated through the study of flowering under normal autumn sown field conditions as well as photoperiod responses under a controlled environment. Quantitative trait loci (QTLs) for these traits were mapped in a doubled-haploid (DH) population derived from a cross between the wheat cultivars 'Courtot' and 'Chinese Spring'. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 380 markers was used for QTL mapping. The genome was well covered (85%) except for chromosomes 1D and 4D, and a set of anchor loci regularly spaced over the genome (one marker each 15.5 cM) was chosen for marker regression analysis. The presence of a QTL was declared at a significance threshold of alpha = 0.005. The population was grown under field conditions in Clermont-Ferrand, France during two years (1994-1995), in Norwich, U.K. over one year (1998), and also under controlled environments in Norwich. For each trait, between 2 and 4 QTLs were identified with individual effects ranging between 6.3% and 44.4% of the total phenotypic variation. Two QTLs were detected that simultaneously affected heading time and photoperiod response. For heading time, these two QTLs were detected in more than one year. One QTL located on chromosome arm 2BS near the locus Xfbb121-2B, co-segregated with the gene Ppd-B1 known to be involved in photoperiod response. This chromosome region explained a large part of the variation (23.4-44.4% depending on the years or the traits). Another region located on chromosome arm 7BS between the loci Xfbb324-7B and Xfbb53-7B also had a strong effect (7.3-15.3%). This region may correspond to a QTL for earliness per se.Key words: molecular markers, Triticum aestivum, Ppd, Vrn.


Sign in / Sign up

Export Citation Format

Share Document