Exploring the possibility of obtaining terminal heat tolerance in a doubled haploid population of spring wheat (Triticum aestivum L.) in the eastern Gangetic plains of India

2012 ◽  
Vol 135 ◽  
pp. 1-9 ◽  
Author(s):  
Chhavi Tiwari ◽  
Hugh Wallwork ◽  
Ram Dhari ◽  
B. Arun ◽  
V.K. Mishra ◽  
...  
2009 ◽  
Vol 89 (5) ◽  
pp. 945-951 ◽  
Author(s):  
R M DePauw ◽  
R E Knox ◽  
F R Clarke ◽  
J M Clarke ◽  
T N McCaig

Based on 34 replicated trials over 3 yr, Stettler, a doubled haploid hard red spring wheat (Triticum aestivum L.), expressed significantly higher grain yield than all checks except Superb. Wheat and flour protein concentration were significantly greater than all of the checks except Lillian. It matured significantly later than AC Barrie and Katepwa but earlier than Superb. Stettler was significantly shorter than all of the checks except Superb and was more resistant to lodging than Katepwa and Laura. Stettler had high grain volume weight and intermediate kernel weight relative to the checks, and meets the end-use quality specifications of the Canada Western Red Spring wheat market class. Stettler expressed resistance to prevalent races of stem rust, common bunt and loose smut, with moderate susceptibility to prevalent races of leaf rust and fusarium head blight.Key words: Triticum aestivum L., cultivar description, grain yield, protein, disease resistance, doubled haploid


2001 ◽  
Vol 52 (12) ◽  
pp. 1267 ◽  
Author(s):  
K. Mrva ◽  
D. J. Mares

Mapping of the late maturity α-amylase (LMA) gene using quantitative trait locus (QTL) analysis represents an important step in identification of potential molecular markers that would greatly improve efficiency and accuracy of screening for LMA. QTL controlling the expression of LMA in wheat were detected in a doubled haploid (DH) cross/population derived from wheat (Triticum aestivum L. em. Thell) cultivars Cranbrook (LMA source) and Halberd (non-LMA). The DH population and parents were sown in replicated trials at Narrabri with sowing times differing by 2 weeks. Cool temperature treatment of detached tillers was used to induce expression of LMA in lines carrying the defect. The number of grains in ripe, treated tillers that contained high pI (malt, germination type) α-amylase isozymes was measured using an ELISA antibody kit highly specific for high pI isozymes. QTL analyses were conducted separately for each sowing, but results from both sowings were consistent and indicated that there was a highly significant (P < 0.001) QTL on the long arm of chromosome 7B (accounting for 31% of the variation in the first experiment), with Cranbrook contributing the higher value allele. A second QTL that accounted for 13% of the variation was found close to the centromere on chromosome 3B. Although it was less important than the QTL on 7B it was nevertheless still significant (P < 0.05).


Genome ◽  
2011 ◽  
Vol 54 (6) ◽  
pp. 517-527 ◽  
Author(s):  
Bahram Heidari ◽  
Badraldin Ebrahim Sayed-Tabatabaei ◽  
Ghodratollah Saeidi ◽  
Michael Kearsey ◽  
Kazuhiro Suenaga

A doubled haploid (DH) population derived from a cross between the Japanese cultivar ‘Fukuho-kumogi’ and the Israeli wheat line ‘Oligoculm’ was used to map genome regions involved in the expression of grain yield, yield components, and spike features in wheat (Triticum aestivum L). A total of 371 markers (RAPD, SSR, RFLP, AFLP, and two morphological traits) were used to construct the linkage map that covered 4190 cM of wheat genome including 28 linkage groups. The results of composite interval mapping for all studied traits showed that some of the quantitative trait loci (QTL) were stable over experiments conducted in 2004 and 2005. The major QTL located in the Hair–Xpsp2999 interval on chromosome 1A controlled the expression of grains/spike (R2 = 12.9% in 2004 and 22.4% in 2005), grain weight/spike (R2 = 21.4% in 2004 and 15.8% in 2005), and spike number (R2 = 15.6% in 2004 and 5.4% in 2005). The QTL for grain yield located on chromosomes 6A, 6B, and 6D totally accounted for 27.2% and 31.7% of total variation in this trait in 2004 and 2005, respectively. Alleles inherited from ‘Oligoculm’ increased the length of spikes and had decreasing effects on spike number. According to the data obtained in 2005, locus Xgwm261 was associated with a highly significant spike length QTL (R2 = 42.33%) and also the major QTL for spikelet compactness (R2 = 26.1%).


Sign in / Sign up

Export Citation Format

Share Document