scholarly journals Erratum to: Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars

2011 ◽  
Vol 124 (2) ◽  
pp. 247-247
Author(s):  
Minghui Wang ◽  
Ning Jiang ◽  
Tianye Jia ◽  
Lindsey Leach ◽  
James Cockram ◽  
...  
2011 ◽  
Vol 124 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Minghui Wang ◽  
Ning Jiang ◽  
Tianye Jia ◽  
Lindsey Leach ◽  
James Cockram ◽  
...  

2020 ◽  
Vol 110 (4) ◽  
pp. 881-891 ◽  
Author(s):  
Anke Martin ◽  
Paula Moolhuijzen ◽  
Yongfu Tao ◽  
Judy McIlroy ◽  
Simon R. Ellwood ◽  
...  

Net form net blotch (NFNB), caused by the fungal pathogen Pyrenophora teres f. teres, is an important foliar disease present in all barley-producing regions of the world. This fungus is a hemibiotrophic and heterothallic ascomycete, where sexual recombination can lead to changes in disease expression in the host. Knowledge of the genetic architecture and genes involved in virulence is vital to increase the durability of NFNB resistance in barley cultivars. We used a genome-wide association mapping approach to characterize P. teres f. teres genomic regions associated with virulence in Australian barley cultivars. One hundred eighty-eight P. teres f. teres isolates collected across five Australian states were genotyped using Diversity Arrays Technology sequence markers and phenotyped across 20 different barley genotypes. Association mapping identified 14 different genomic regions associated with virulence, with the majority located on P. teres f. teres chromosomes 3 and 5 and one each present on chromosomes 1, 6, and 9. Four of the regions identified were confirmed by quantitative trait loci (QTL) mapping. The QTL regions are discussed in the context of their genomic architecture together with examination of their gene contents, which identified 20 predicted effectors. The number of QTL shown in this study at the population level clearly illustrates a complex genetic basis of P. teres f. teres virulence compared with pure necrotrophs, such as the wheat pathogens Parastagonospora nodorum and Parastagonospora tritici-repentis.


3 Biotech ◽  
2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Kumari Shikha ◽  
J. P. Shahi ◽  
M. T. Vinayan ◽  
P. H. Zaidi ◽  
A. K. Singh ◽  
...  

2017 ◽  
Vol 77 ◽  
pp. 211-218 ◽  
Author(s):  
Jieyun Li ◽  
Awais Rasheed ◽  
Qi Guo ◽  
Yan Dong ◽  
Jindong Liu ◽  
...  

Genomics ◽  
2019 ◽  
Vol 111 (6) ◽  
pp. 1794-1801 ◽  
Author(s):  
Nathanael Fickett ◽  
Andres Gutierrez ◽  
Mohit Verma ◽  
Michael Pontif ◽  
Anna Hale ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document