parastagonospora nodorum
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 53)

H-INDEX

14
(FIVE YEARS 5)

2022 ◽  
Vol 18 (1) ◽  
pp. e1010149
Author(s):  
Evan John ◽  
Silke Jacques ◽  
Huyen T. T. Phan ◽  
Lifang Liu ◽  
Danilo Pereira ◽  
...  

The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in representative P. nodorum isolates from Australia and South Africa. The presence of PE401 removed the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 wheat varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both ‘selfish’ and ‘altruistic’ characteristics. This offers an insight into a complex NE-NE interaction that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.


Planta ◽  
2021 ◽  
Vol 255 (1) ◽  
Author(s):  
Shabnam Katoch ◽  
Vivek Sharma ◽  
Devender Sharma ◽  
Richa Salwan ◽  
S. K. Rana

2021 ◽  
pp. 393-434
Author(s):  
Min Lin ◽  
◽  
Morten Lillemo ◽  

Septoria nodorum blotch (SNB) caused by the necrotrophic fungus Parastagonospora nodorum is an important wheat disease in many high rainfall areas across the world. It reduces both yield and grain quality by causing symptoms on wheat leaves and glumes, and can cause yield losses up to 30% under warm and humid conditions. This book chapter gives an update on the recent progress in genetic mapping of SNB resistance in wheat, with focus on adult plant leaf blotch and glume blotch resistance with relevance to resistance breeding. This is followed by a case study on the investigation of the naturally occurring P. nodorum population in Norway and mapping of resistance loci in relevant wheat germplasm using MAGIC populations and GWAS panels as well as how this information can be used to improve resistance breeding and disease management. In the end, some future perspectives of SNB resistance breeding is provided.


2021 ◽  
Author(s):  
Bayantes Dagvadorj ◽  
Megan A. Outram ◽  
Simon J. Williams ◽  
Peter S. Solomon

SummaryThe plant pathogen Parastagonospora nodorum secretes necrotrophic effectors to promote disease. These effectors induce cell death on wheat cultivars carrying dominant susceptibility genes in an inverse gene-for-gene manner. However, the molecular mechanisms underpinning these interactions and resulting cell death remain unclear. Here, we used a yeast-two-hybrid library approach to identify wheat proteins that interact with the necrotrophic effector ToxA. Using this strategy, we identified an interaction between ToxA and a wheat transmembrane NDR/HIN1-like protein (TaNHL10) and confirmed the interaction using in-planta co-immunoprecipitation and confocal microscopy co-localization analysis. We showed that the C-terminus of TaNHL10 is extracellular whilst the N-terminus was localized in the cytoplasm. Further analyses using yeast-two-hybrid and confocal microscopy co-localization showed that ToxA interacts with the C-terminal LEA2 extracellular domain of TaNHL10. Random mutagenesis was then used to identify a ToxA mutant, ToxAN109D, which was unable to interact with TaNHL10 in yeast-two-hybrid assays. Subsequent heterologous expression and purification of ToxAN109D in Nicotiania benthamiana revealed that the mutated protein was unable to induce necrosis on Tsn1-dominant wheat cultivars confirming that the interaction of ToxA with TaNHL10 is required to induce cell death. Collectively, these data advance our understanding on how ToxA induces cell death during infection and further highlights the importance of host cell surface interactions in necrotrophic pathosystems.


Author(s):  
Igor G. Sinelnikov ◽  
Niklas E. Siedhoff ◽  
Andrey M. Chulkin ◽  
Ivan N. Zorov ◽  
Ulrich Schwaneberg ◽  
...  

Recently, the study of chitinases has become an important target of numerous research projects due to their potential for applications, such as biocontrol pest agents. Plant chitinases from carnivorous plants of the genus Drosera are most aggressive against a wide range of phytopathogens. However, low solubility or insolubility of the target protein hampered application of chitinases as biofungicides. To obtain plant chitinase from carnivorous plants of the genus Drosera in soluble form in E.coli expression strains, three different approaches including dialysis, rapid dilution, and refolding on Ni-NTA agarose to renaturation were tested. The developed « Rapid dilution » protocol with renaturation buffer supplemented by 10% glycerol and 2M arginine in combination with the redox pair of reduced/oxidized glutathione, increased the yield of active soluble protein to 9.5 mg per 1 g of wet biomass. A structure-based removal of free cysteines in the core domain based on homology modeling of the structure was carried out in order to improve the soluble of chitinase. One improved chitinase variant (C191A/C231S/C286T) was identified which shows improved expression and solubility in E. coli expression systems compared to wild type. Computational analyzes of the wild-type and the improved variant revealed overall higher fluctuations of the structure while maintaining a global protein stability. It was shown that free cysteines on the surface of the protein globule which are not involved in the formation of inner disulfide bonds contribute to the insolubility of chitinase from Drosera capensis. The functional characteristics showed that chitinase exhibits high activity against colloidal chitin (360 units/g) and high fungicidal properties of recombinant chitinases against Parastagonospora nodorum. Latter highlights the application of chitinase from D. capensis as a promising enzyme for the control of fungal pathogens in agriculture.


Author(s):  
Navjot Kaur ◽  
Hillary Mehl

Stagonospora nodorum blotch (SNB) caused by Parastagonospora nodorum is an important leaf spot disease in the mid-Atlantic U.S. Disease management approaches include use of resistant varieties, cultural control, and foliar fungicides. Frequent use of foliar fungicides can select for fungicide resistance within pathogen populations. Recently, the first report of quinone outside inhibitor (QoI) fungicide resistance in the U.S. was made based on a relatively small collection of P. nodorum isolates from Virginia. The objective of this study was to conduct a state-wide, two-year survey of P. nodorum populations in Virginia wheat and quantify frequencies of the target-site mutation that confers QoI resistance. A total of 318 isolates of P. nodorum were obtained from wheat collected at seven locations distributed throughout the wheat-growing regions of Virginia in 2018 and 2019. A previously designed pyrosequencing assay that detects the G143A substitution in the cytochrome b gene of P. nodorum was used to screen isolates for the presence or absence of the target site mutation. The G143A substitution was detected in all sampled fields. Among locations and years, frequencies of the mutation in P. nodorum populations ranged from 5-32% (mean = 19%). Thus, the QoI-resistance conferring G143A mutation was widespread in P. nodorum populations in Virginia and it occurred at a relatively high frequency. Results suggest that fungicides containing QoI active ingredients may not be effective for controlling SNB in Virginia and the surrounding region, and application of stand-alone QoI fungicides for disease control in wheat is not recommended.


2021 ◽  
Author(s):  
Darcy A. B. Jones ◽  
Kasia Rybak ◽  
Stefania Bertazzoni ◽  
Kar-Chun Tan ◽  
Huyen T. T. Phan ◽  
...  

AbstractThe wheat pathogen Parastagonospora nodorum has emerged as a model necrotrophic fungal species with growing genomic resources. Recent population-level pan-genome studies were leveraged to provide novel insights into pathogen evolution and effector-like gene contents relevant to local crop disease outbreaks. In this study, we examined 156 isolates representing a regional population from the Western Australian (WA) wheat-belt region, and 17 internationally sourced isolates. We observed a highly diverse local population, within which were numerous small and highly similar clusters of isolates from hotter and drier regions. Pan-genome assembly and orthologous gene datasets resulted in 3579 predicted effector candidates, 2291 of which exhibited presence-absence variation (PAV) across the population, and 1362 were specific to WA isolates. There was an abundance of mutations (including repeat-induced point mutation (RIP)), distributed in ‘hot-spots’ within the pan-genomic landscape that were rich in effector candidates. Three characterised effector loci (ToxA, Tox1 and Tox3) were located within sub- telomeric regions of lower diversity, but were nestled within larger high-diversity regions. RIP was widespread across the genome, but non-synonymous RIP-like mutations were strongly selected against. These improved bioinformatic resources for P. nodorum, represent progressive advancements in fungal pan-genomics, with a view towards supporting region- specific surveillance of host-pathogen interactions.


2021 ◽  
Vol 7 (8) ◽  
Author(s):  
Danilo Pereira ◽  
Ursula Oggenfuss ◽  
Bruce A. McDonald ◽  
Daniel Croll

The activity of transposable elements (TEs) can be an important driver of genetic diversity with TE-mediated mutations having a wide range of fitness consequences. To avoid deleterious effects of TE activity, some fungi have evolved highly sophisticated genomic defences to reduce TE proliferation across the genome. Repeat-induced point mutation (RIP) is a fungal-specific TE defence mechanism efficiently targeting duplicated sequences. The rapid accumulation of RIPs is expected to deactivate TEs over the course of a few generations. The evolutionary dynamics of TEs at the population level in a species with highly repressive genome defences is poorly understood. Here, we analyse 366 whole-genome sequences of Parastagonospora nodorum, a fungal pathogen of wheat with efficient RIP. A global population genomics analysis revealed high levels of genetic diversity and signs of frequent sexual recombination. Contrary to expectations for a species with RIP, we identified recent TE activity in multiple populations. The TE composition and copy numbers showed little divergence among global populations regardless of the demographic history. Miniature inverted-repeat transposable elements (MITEs) and terminal repeat retrotransposons in miniature (TRIMs) were largely underlying recent intra-species TE expansions. We inferred RIP footprints in individual TE families and found that recently active, high-copy TEs have possibly evaded genomic defences. We find no evidence that recent positive selection acted on TE-mediated mutations rather that purifying selection maintained new TE insertions at low insertion frequencies in populations. Our findings highlight the complex evolutionary equilibria established by the joint action of TE activity, selection and genomic repression.


2021 ◽  
Author(s):  
Evan John ◽  
Silke Jacques ◽  
Huyen Phan ◽  
Lifang Liu ◽  
Danilo Pereira ◽  
...  

The fungus Parastagonospora nodorum uses proteinaceous necrotrophic effectors (NEs) to induce tissue necrosis on wheat leaves during infection, leading to the symptoms of septoria nodorum blotch (SNB). The NEs Tox1 and Tox3 induce necrosis on wheat possessing the dominant susceptibility genes Snn1 and Snn3B1/Snn3D1, respectively. We previously observed that Tox1 is epistatic to the expression of Tox3 and a quantitative trait locus (QTL) on chromosome 2A that contributes to SNB resistance/susceptibility. The expression of Tox1 is significantly higher in the Australian strain SN15 compared to the American strain SN4. Inspection of the Tox1 promoter region revealed a 401 bp promoter genetic element in SN4 positioned 267 bp upstream of the start codon that is absent in SN15, called PE401. Analysis of the world-wide P. nodorum population revealed that a high proportion of Northern Hemisphere isolates possess PE401 whereas the opposite was observed in the Southern Hemisphere. The presence of PE401 ablates the epistatic effect of Tox1 on the contribution of the SNB 2A QTL but not Tox3. PE401 was introduced into the Tox1 promoter regulatory region in SN15 to test for direct regulatory roles. Tox1 expression was markedly reduced in the presence of PE401. This suggests a repressor molecule(s) binds PE401 and inhibits Tox1 transcription. Infection assays also demonstrated that P. nodorum which lacks PE401 is more pathogenic on Snn1 varieties than P. nodorum carrying PE401. An infection competition assay between P. nodorum isogenic strains with and without PE401 indicated that the higher Tox1-expressing strain rescued the reduced virulence of the lower Tox1-expressing strain on Snn1 wheat. Our study demonstrated that Tox1 exhibits both selfish and altruistic characteristics. This offers an insight into a NE arms race that is occurring within the P. nodorum population. The importance of PE401 in breeding for SNB resistance in wheat is discussed.


2021 ◽  
Author(s):  
Jonathan K. Richards ◽  
Gayan K. Kariyawasam ◽  
Sudeshi Seneviratne ◽  
Nathan A. Wyatt ◽  
Steven S. Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document