Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99

2014 ◽  
Vol 127 (8) ◽  
pp. 1681-1688 ◽  
Author(s):  
Matthew N. Rouse ◽  
Jayaveeramuthu Nirmala ◽  
Yue Jin ◽  
Shiaoman Chao ◽  
Thomas G. Fetch ◽  
...  
2017 ◽  
Vol 131 (3) ◽  
pp. 625-635 ◽  
Author(s):  
Shisheng Chen ◽  
Yan Guo ◽  
Jordan Briggs ◽  
Felix Dubach ◽  
Shiaoman Chao ◽  
...  

Crop Science ◽  
2014 ◽  
Vol 54 (6) ◽  
pp. 2663-2672 ◽  
Author(s):  
Qi Zheng ◽  
Daryl L. Klindworth ◽  
Timothy L. Friesen ◽  
Ai-Feng Liu ◽  
Zhen-Sheng Li ◽  
...  

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shyam Solanki ◽  
Jonathan Richards ◽  
Gazala Ameen ◽  
Xue Wang ◽  
Atiya Khan ◽  
...  

1969 ◽  
Vol 11 (2) ◽  
pp. 266-274 ◽  
Author(s):  
K. N. Kao ◽  
D. R. Knott

The inheritance of pathogenicity in wheat stem rust was studied in selfed cultures of races 29 and 111, F1 and F2 cultures of a cross between the two races and cultures from a backcross to race 29. The various cultures were tested on Marquis and Prelude and on a series of lines of these varieties carrying single genes for stem rust resistance. Virulence on Sr 5, Sr 6, Sr 8, Sr 9a, Sr 14 and a gene in Marquis was recessive and in each case there was a single gene for virulence corresponding to each gene for resistance. Virulence on Sr 1 was possibly controlled by two dominant complementary genes. There appeared to be two alleles for virulence on Prelude, one dominant and one recessive.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 941-944 ◽  
Author(s):  
M. N. Rouse ◽  
Y. Jin

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, has been effectively controlled through the use of genetic resistance. P. graminis f. sp. tritici race TTKSK (Ug99) possesses virulence to many resistance genes that have been used in wheat breeding worldwide. One strategy to aid breeders in developing resistant cultivars is to utilize resistance genes transferred from wild relatives to wheat. Stem rust resistance genes have previously been introgressed from Triticum monococcum to wheat. In order to identify additional resistance genes, we screened 1,061 accessions of T. monococcum and 205 accessions of T. urartu against race TTKSK and four additional P. graminis f. sp. tritici races: TTTTF, TRTTF, QFCSC, and MCCFC. A high frequency of the accessions (78.7% of T. monococcum and 93.0% of T. urartu) were resistant to P. graminis f. sp. tritici race TTKSK, with infection types ranging from 0 to 2+. Among these resistant accessions, 55 T. monococcum accessions (6.4% of the total) were also resistant to the other four races. Associations of resistance in T. monococcum germplasm to different races indicated the presence of genes conferring resistance to multiple races. Comparing the observed infection type patterns to the expected patterns of known genes indicated that previously uncharacterized genes for resistance to race TTKSK exist in both T. monococcum and T. urartu.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4882 ◽  
Author(s):  
Xiaofeng Xu ◽  
Depeng Yuan ◽  
Dandan Li ◽  
Yue Gao ◽  
Ziyuan Wang ◽  
...  

Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2, Sr31, and Sr38, respectively. Cultivars “Kehan 3” and “Jimai 22” likely carried Sr25. None of the cultivars carried Sr24 or Sr26. These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.


Crop Science ◽  
2010 ◽  
Vol 50 (4) ◽  
pp. 1393-1400 ◽  
Author(s):  
Guo Tai Yu ◽  
Qijun Zhang ◽  
Daryl L. Klindworth ◽  
Timothy L. Friesen ◽  
Ron Knox ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document