scholarly journals Molecular mapping of adult plant resistance to Parastagonospora nodorum leaf blotch in bread wheat lines ‘Shanghai-3/Catbird’ and ‘Naxos’

2014 ◽  
Vol 127 (12) ◽  
pp. 2635-2644 ◽  
Author(s):  
Qiongxian Lu ◽  
Morten Lillemo
Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2359-2366 ◽  
Author(s):  
Bekele Hundie ◽  
Bedada Girma ◽  
Zerihun Tadesse ◽  
Erena Edae ◽  
Pablo Olivera ◽  
...  

In Ethiopia, breeding rust resistant wheat cultivars is a priority for wheat production. A stem rust epidemic during 2013 to 2014 on previously resistant cultivar Digalu highlighted the need to determine the effectiveness of wheat lines to multiple races of Puccinia graminis f. sp. tritici in Ethiopia. During 2014 and 2015, we evaluated a total of 97 bread wheat and 14 durum wheat genotypes against four P. graminis f. sp. tritici races at the seedling stage and in single-race field nurseries. Resistance genes were postulated using molecular marker assays. Bread wheat lines were resistant to race JRCQC, the race most virulent to durum wheat. Lines with stem rust resistance gene Sr24 possessed the most effective resistance to the four races. Only three lines with adult plant resistance possessed resistance effective to the four races comparable with cultivars with Sr24. Although responses of the wheat lines across races were positively correlated, wheat lines were identified that possessed adult plant resistance to race TTKSK but were relatively susceptible to race TKTTF. This study demonstrated the importance of testing wheat lines for response to multiple races of the stem rust pathogen to determine if lines possessed non-race-specific resistance. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


2019 ◽  
Vol 18 (5) ◽  
pp. 1014-1023 ◽  
Author(s):  
Pei-pei ZHANG ◽  
Takele Weldu Gebrewahid ◽  
Yue ZHOU ◽  
Qing-luo LI ◽  
Zai-feng LI ◽  
...  

2020 ◽  
Vol 110 (4) ◽  
pp. 892-899 ◽  
Author(s):  
Zhikang Li ◽  
Chan Yuan ◽  
Sybil A. Herrera-Foessel ◽  
Mandeep S. Randhawa ◽  
Julio Huerta-Espino ◽  
...  

The durum wheat lines Heller#1 and Dunkler from the International Maize and Wheat Improvement Center Global Wheat Program showed moderate and stable adult plant resistance to leaf rust under high disease pressure over field environments in northwestern Mexico. Leaf rust phenotyping was performed on two recombinant inbred line (RIL) populations derived from crosses of Heller#1 and Dunkler with the susceptible parent Atred#2, conducted under artificially induced Puccinia triticina epidemics in 2013, 2014, 2015, and 2016. The Atred#2 × Heller#1 and Atred#2 × Dunkler populations were genotyped by single nucleotide polymorphism (SNP) platforms and diversity arrays technology markers, respectively. Four leaf rust resistance quantitative trait loci were detected simultaneously in the two RIL populations: Lr46, QLr.cim-2BC, QLr.cim-5BL, and QLr.cim-6BL based on phenotypic data across all four crop seasons. They explained 11.7 to 46.8%, 7.2 to 26.1%, 8.4 to 24.1%, and 12.4 to 28.5%, respectively, of the phenotypic variation for leaf rust resistance in Atred#2 × Heller#1 and 16.3 to 56.6%, 6.7 to 15.7%, 4.1 to 10.1%, and 5.1 to 20.2% of the variation in the Atred#2 × Dunkler population. Only the resistance allele of QLr.cim-2BC was from the susceptible parent Atred#2, and resistance alleles at other loci came from the resistant parents Heller#1 and Dunkler. The SNP markers closely linked to Lr46 and QLr.cim-2BC were converted to kompetitive allele specific PCR markers for use in marker-assisted selection to improve leaf rust resistance through crosses with Heller#1 and Dunkler sources.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 457-463 ◽  
Author(s):  
Z. L. Wang ◽  
L. H. Li ◽  
Z. H. He ◽  
X. Y. Duan ◽  
Y. L. Zhou ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is a widespread wheat disease in China. Identification of race-specific genes and adult plant resistance (APR) is of major importance in breeding for an efficient genetic control strategy. The objectives of this study were to (i) identify genes that confer seedling resistance to powdery mildew in Chinese bread wheat cultivars and introductions used by breeding programs in China and (ii) evaluate their APR in the field. The results showed that (i) 98 of 192 tested wheat cultivars and lines appear to have one or more resistance genes to powdery mildew; (ii) Pm8 and Pm4b are the most common resistance genes in Chinese wheat cultivars, whereas Pm8 and Pm3d are present most frequently in wheat cultivars introduced from CIMMYT, the United States, and European countries; (iii) genotypes carrying Pm1, Pm3e, Pm5, and Pm7 were susceptible, whereas those carrying Pm12, Pm16, and Pm20 were highly resistant to almost all isolates of B. graminis f. sp. tritici tested; and (iv) 22 genotypes expressed APR. Our data showed that the area under the disease progress curve, maximum disease severity on the penultimate leaf, and the disease index are good indicators of the degree of APR in the field. It may be a good choice to combine major resistance genes and APR genes in wheat breeding to obtain effective resistance to powdery mildew.


Sign in / Sign up

Export Citation Format

Share Document