Coupling of MIC-3 overexpression with the chromosomes 11 and 14 root-knot nematode (RKN) (Meloidogyne incognita) resistance QTLs provides insights into the regulation of the RKN resistance response in Upland cotton (Gossypium hirsutum)

2016 ◽  
Vol 129 (9) ◽  
pp. 1759-1767 ◽  
Author(s):  
Martin J. Wubben ◽  
Franklin E. Callahan ◽  
Johnie N. Jenkins ◽  
Dewayne D. Deng
Author(s):  
Refik Bozbuga ◽  
H. Yildiz Dasgan ◽  
Yelderem Akhoundnejad ◽  
Mustafa Imren ◽  
Halil Toktay ◽  
...  

Root knot nematodes (<italic>Meloidogyne</italic> spp.) cause immense yield losses in crops throughout the world. Use of resistant germplasms of plants limits the root knot nematode damages. In this study, 87 common bean (<italic>Phaseoulus vulgaris</italic> L.) genotypes were screened against the root knot nematode, <italic>Meloidogyne incognita</italic> to determine the resistance response under growth chamber conditions in Turkey. <italic>P. vulgaris</italic> genotypes were evaluated based on resistance index (RI); root galling severity and nematode egg mass production on a 1-9 scale. The nematode negatively influenced the growth (fresh weight) of bean genotypes. At the completion of the study, 13 bean genotypes were found as immune (Sehirali), highly resistant (TR42164, Seleksiyon 5, Seker Fasulye, Fas-Agadir-Suk-1) and moderately resistant (Acik Badem, TR68587, TR43477, TR53827, TR28018, Gülnar-3, Siyah Fasulye, Kibris Amerikan) against <italic>M. incognita</italic> thus suggesting the use of such genotypes in breeding studies as a parental material to develop the root knot nematode resistant cultivars.


Euphytica ◽  
2011 ◽  
Vol 183 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Johnie N. Jenkins ◽  
Jack C. McCarty ◽  
Martin J. Wubben ◽  
Russell Hayes ◽  
Osman A. Gutierrez ◽  
...  

HortScience ◽  
1991 ◽  
Vol 26 (12) ◽  
pp. 1503-1504
Author(s):  
B.A. Mullin ◽  
G.S. Abawi ◽  
M.A. Pastor-Corrales ◽  
J.L. Kornegay

A stem grafting technique was used to determine the contribution of root and shoot tissues of bean (Phaseolus vulgaris L.) to the resistance response to the root-knot nematode, Meloidogyne incognita (Kofoid and White, 1919) Chitwood 1949. Stemgrafts were prepared between resistant (line A 211 or cultivar Nemasnap) and susceptible (Canario Divex) bean cultivars in all possible scion-rootstock combinations. Graft combinations in which the rootstock was resistant resulted in a resistant response to M. incognita, and those combinations in which the rootstock was susceptible resulted in a susceptible response, regardless of scion component. Resistance factors were therefore either localized within roots or not translocated basipetally through the stem graft union.


Fruits ◽  
2009 ◽  
Vol 64 (5) ◽  
pp. 295-303 ◽  
Author(s):  
Hang Ye ◽  
Wen-jun Wang ◽  
Guo-jie Liu ◽  
Li-xin Zhu ◽  
Ke-gong Jia

Sign in / Sign up

Export Citation Format

Share Document