Pointwise complexity of the derivative of a computable function

Author(s):  
Ethan McCarthy
Keyword(s):  
Algorithmica ◽  
2021 ◽  
Author(s):  
Édouard Bonnet ◽  
Nidhi Purohit

AbstractA resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time $$f(\text {pw})n^{o(\text {pw})}$$ f ( pw ) n o ( pw ) on n-vertex graphs of constant degree, with $$\text {pw}$$ pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter $$\text {tl}+\Delta$$ tl + Δ , where $$\text {tl}$$ tl is the tree-length and $$\Delta$$ Δ the maximum-degree of the input graph.


2014 ◽  
Vol 25 (01) ◽  
pp. 89-99 ◽  
Author(s):  
ALEXANDER GOLOVNEV

Let G be a complete directed graph with n vertices and integer edge weights in range [0,M]. It is well known that an optimal Traveling Salesman Problem (TSP) in G can be solved in 2n time and space (all bounds are given within a polynomial factor of the input length, i.e., poly(n, log M)) and this is still the fastest known algorithm. If we allow a polynomial space only, then the best known algorithm has running time 4nnlog n. For TSP with bounded weights there is an algorithm with 1.657n · M running time. It is a big challenge to develop an algorithm with 2n time and polynomial space. Also, it is well-known that TSP cannot be approximated within any polynomial time computable function unless P=NP. In this short note we propose a very simple algorithm that, for any 0 < ε < 1, finds (1+ε)-approximation to asymmetric TSP in 2nε−1 time and ε−1 · poly(n, log M) space. Thereby, for any fixed ε, the algorithm needs 2n steps and polynomial space to compute (1 + ε)-approximation.


1961 ◽  
Vol 4 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Joachim Lambek

This is an expository note to show how an “infinite abacus” (to be defined presently) can be programmed to compute any computable (recursive) function. Our method is probably not new, at any rate, it was suggested by the ingenious technique of Melzak [2] and may be regarded as a modification of the latter.By an infinite abacus we shall understand a countably infinite set of locations (holes, wires etc.) together with an unlimited supply of counters (pebbles, beads etc.). The locations are distinguishable, the counters are not. The confirmed finitist need not worry about these two infinitudes: To compute any given computable function only a finite number of locations will be used, and this number does not depend on the argument (or arguments) of the function.


2002 ◽  
Vol 67 (3) ◽  
pp. 1078-1082
Author(s):  
Carl G. Jockusch ◽  
Tamara J. Lakins

AbstractFor X ⊆ ω, let [X]n denote the class of all n-element subsets of X. An infinite set A ⊆ ω is called n-r-cohesive if for each computable function f: [ω]n → {0, 1} there is a finite set F such that f is constant on [A − F]n. We show that for each n > 2 there is no Πn0 set A ⊆ ω which is n-r-cohesive. For n = 2 this refutes a result previously claimed by the authors, and for n ≥ 3 it answers a question raised by the authors.


2008 ◽  
Vol 73 (4) ◽  
pp. 1407-1415 ◽  
Author(s):  
Roland Sh. Omanadze ◽  
Andrea Sorbi
Keyword(s):  

AbstractLet A be an infinite set and let K be creative: we show that K ≤QA if and only if KA. (Here ≤Q denotes Q-reducibility, and is the subreducibility of ≤Q obtained by requesting that Q-reducibility be provided by a computable function f such that Wf(x) ∩ Wf(y) = ∅. if x ≠ y.) Using this result we prove that A is hyperhyperimmune if and only if no subset B of A is s-complete, i.e., there is no subset B of A such that ≤sB, where ≤s denotes s-reducibility, and denotes the complement of K.


2014 ◽  
Vol 14 (01) ◽  
pp. 1450004 ◽  
Author(s):  
Laurent Bienvenu ◽  
Rupert Hölzl ◽  
Joseph S. Miller ◽  
André Nies

We consider effective versions of two classical theorems, the Lebesgue density theorem and the Denjoy–Young–Saks theorem. For the first, we show that a Martin-Löf random real z ∈ [0, 1] is Turing incomplete if and only if every effectively closed class 𝒞 ⊆ [0, 1] containing z has positive density at z. Under the stronger assumption that z is not LR-hard, we show that every such class has density one at z. These results have since been applied to solve two open problems on the interaction between the Turing degrees of Martin-Löf random reals and K-trivial sets: the noncupping and covering problems. We say that f : [0, 1] → ℝ satisfies the Denjoy alternative at z ∈ [0, 1] if either the derivative f′(z) exists, or the upper and lower derivatives at z are +∞ and -∞, respectively. The Denjoy–Young–Saks theorem states that every function f : [0, 1] → ℝ satisfies the Denjoy alternative at almost every z ∈ [0, 1]. We answer a question posed by Kučera in 2004 by showing that a real z is computably random if and only if every computable function f satisfies the Denjoy alternative at z. For Markov computable functions, which are only defined on computable reals, we can formulate the Denjoy alternative using pseudo-derivatives. Call a real zDA-random if every Markov computable function satisfies the Denjoy alternative at z. We considerably strengthen a result of Demuth (Comment. Math. Univ. Carolin.24(3) (1983) 391–406) by showing that every Turing incomplete Martin-Löf random real is DA-random. The proof involves the notion of nonporosity, a variant of density, which is the bridge between the two themes of this paper. We finish by showing that DA-randomness is incomparable with Martin-Löf randomness.


2008 ◽  
Vol 73 (4) ◽  
pp. 1341-1353 ◽  
Author(s):  
Stephen Binns

AbstractAn infinite binary sequence is complex if the Kolmogorov complexity of its initial segments is bounded below by a computable function. We prove that a class P contains a complex element if and only if it contains a wtt-cover for the Cantor set. That is, if and only if for every Y ⊆ ω there is an X in P such that X ≥wttY. We show that this is also equivalent to the class's being large in some sense. We give an example of how this result can be used in the study of scattered linear orders.


1972 ◽  
Vol 37 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Albert R. Meyer ◽  
Patrick C. Fischer

The complexity of a computable function can be measured by considering the time or space required to compute its values. Particular notions of time and space arising from variants of Turing machines have been investigated by R. W. Ritchie [14], Hartmanis and Stearns [8], and Arbib and Blum [1], among others. General properties of such complexity measures have been characterized axiomatically by Rabin [12], Blum [2], Young [16], [17], and McCreight and Meyer [10].In this paper the speed-up and super-speed-up theorems of Blum [2] are generalized to speed-up by arbitrary total effective operators. The significance of such theorems is that one cannot equate the complexity of a computable function with the running time of its fastest program, for the simple reason that there are computable functions which in a very strong sense have no fastest programs.Let φi be the ith partial recursive function of one variable in a standard Gödel numbering of partial recursive functions. A family Φ0, Φ1, … of functions of one variable is called a Blum measure on computation providing(1) domain (φi) = domain (Φi), and(2) the predicate [Φi(x) = m] is recursive in i, x and m.Typical interpretations of Φi(x) are the number of steps required by the ith Turing machine (in a standard enumeration of Turing machines) to converge on input x, the space or number of tape squares required by the ith Turing machine to converge on input x (with the convention that Φi(x) is undefined even if the machine fails to halt in a finite loop), and the length of the shortest derivation of the value of φi(x) from the ith set of recursive equations.


2004 ◽  
Vol 10 (4) ◽  
pp. 457-486 ◽  
Author(s):  
Robert I. Soare

Abstract. LetMbe a smooth, compact manifold of dimensionn≥ 5 and sectional curvature ∣K∣ ≤ 1. Let Met(M) = Riem(M)/Diff(M) be the space of Riemannian metrics onMmodulo isometries. Nabutovsky and Weinberger studied the connected components of sublevel sets (and local minima) for certain functions on Met(M) such as the diameter. They showed that for every Turing machineTe,eϵ ω, there is a sequence (uniformly effective ine) of homologyn-sphereswhich are also hypersurfaces, such thatis diffeomorphic to the standardn-sphereSn(denoted)iffTehalts on inputk, and in this case the connected sum, so, andis associated with a local minimum of the diameter function on Met(M) whose depth is roughly equal to the settling time ae σe(k)ofTeon inputsy<k.At their request Soare constructed a particular infinite sequence {Ai}ϵωof c.e. sets so that for allithe settling time of the associated Turing machine forAidominates that forAi+1, even when the latter is composed with an arbitrary computable function. From this, Nabutovsky and Weinberger showed that the basins exhibit a “fractal” like behavior with extremely big basins, and very much smaller basins coming off them, and so on. This reveals what Nabutovsky and Weinberger describe in their paper on fractals as “the astonishing richness of the space of Riemannian metrics on a smooth manifold, up to reparametrization.” From the point of view of logic and computability, the Nabutovsky-Weinberger results are especially interesting because: (1) they use c.e. sets to prove structuralcomplexityof the geometry and topology, not merelyundecidabilityresults as in the word problem for groups, Hilbert's Tenth Problem, or most other applications; (2) they usenontrivialinformation about c.e. sets, the Soare sequence {Ai}iϵωabove, not merely Gödel's c.e. noncomputable set K of the 1930's; and (3)withoutusing computability theory there is no known proof that local minima exist even for simple manifolds like the torusT5(see §9.5).


Sign in / Sign up

Export Citation Format

Share Document