Axisymmetric hub-endwall profile optimization for a transonic fan to improve aerodynamic performance based on an integrated design optimization method

2019 ◽  
Vol 60 (3) ◽  
pp. 1267-1282 ◽  
Author(s):  
Cheng Yan ◽  
Zeyong Yin ◽  
Xiuli Shen ◽  
Fushui Guo ◽  
Yu Wu
Author(s):  
Toyotaka Sonoda ◽  
Giles Endicott ◽  
Toshiyuki Arima ◽  
Markus Olhofer

In our previous work on a transonic fan swept outlet guide vane (OGV) for a small turbofan engine (GT2011-46363), we showed a novel oscillatory casing profile that leads to approximately 20% loss reduction, using a numerical design optimization method. In this paper we analyze the resulting geometry of an optimization based on a blade representation which is able to realize significantly larger surface modifications. The final optimized design displays a novel blade geometry that has its maximum blade thickness at around 80% blade chord (located between the blade’s mid-chord and trailing edge) especially in the mid-span region. The flow physics explaining why this blade geometry without the oscillatory casing profile has the same loss reduction level of more than 20% at the peak efficiency point are discussed, focusing on the secondary flow and span-wise static pressure gradient on the blade suction side.


2015 ◽  
Vol 813 ◽  
pp. 10-18 ◽  
Author(s):  
Yong Zhi Wang ◽  
Feng Li ◽  
Xu Zhang ◽  
Wei Min Zhang

An aerodynamic and structural integrated design optimization method of composite wind turbine blade based on multidisciplinary design optimization (MDO) is presented. The optimization aims to reduce the mass of blade under some constraints, including the power and deflection at the rated wind speed, and the strength and deflection under ultimate case. The design variables include parameters both in aerodynamic and structural disciplines. In order to keep the shape of blade smooth,the chord and twist distributions are controlled by the Bezier function in the optimization process. 3D parameterization of blade was carried out in Finite Element Analysis (FEA) software. Considering tip-loss and hub-loss, aerodynamic analysis was performed by using Blade Element Momentum (BEM) theory. Finite Element Method (FEM) was used in structural analysis. Multi-island Genetic Algorithm (MIGA) which has excellent exploration abilities was used to optimize wind turbine blade. RBF meta-model was construct to approximate the accurate structural analysis model by Optimal Latin Hypercube DOE sample points. An example was given to verify the method in this paper. The result shows that the optimization method has good optimization efficiency and the RBF meta-model could reduce the computational cost a lot.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


1999 ◽  
Vol 16 (8) ◽  
pp. 934-952 ◽  
Author(s):  
F. Belblidia ◽  
S.M.B. Afonso ◽  
E. Hinton ◽  
G.C.R. Antonino

Author(s):  
Myung-Jin Choi ◽  
Min-Geun Kim ◽  
Seonho Cho

We developed a shape-design optimization method for the thermo-elastoplasticity problems that are applicable to the welding or thermal deformation of hull structures. The point is to determine the shape-design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of curved surfaces are selected as the design parameters. The shell finite elements, forward finite difference sensitivity, modified method of feasible direction algorithm and a programming language ANSYS Parametric Design Language in the established code ANSYS are employed in the shape optimization. The objective function is the weighted summation of differences between the deformed and the target geometries. The proposed method is effective even though new design variables are added to the design space during the optimization process since the multiple steps of design optimization are used during the whole optimization process. To obtain the better optimal design, the weights are determined for the next design optimization, based on the previous optimal results. Numerical examples demonstrate that the localized severe deviations from the target design are effectively prevented in the optimal design.


Sign in / Sign up

Export Citation Format

Share Document