scholarly journals Second-order reliability methods: a review and comparative study

Author(s):  
Zhangli Hu ◽  
Rami Mansour ◽  
Mårten Olsson ◽  
Xiaoping Du

AbstractSecond-order reliability methods are commonly used for the computation of reliability, defined as the probability of satisfying an intended function in the presence of uncertainties. These methods can achieve highly accurate reliability predictions owing to a second-order approximation of the limit-state function around the Most Probable Point of failure. Although numerous formulations have been developed, the lack of full-scale comparative studies has led to a dubiety regarding the selection of a suitable method for a specific reliability analysis problem. In this study, the performance of commonly used second-order reliability methods is assessed based on the problem scale, curvatures at the Most Probable Point of failure, first-order reliability index, and limit-state contour. The assessment is based on three performance metrics: capability, accuracy, and robustness. The capability is a measure of the ability of a method to compute feasible probabilities, i.e., probabilities between 0 and 1. The accuracy and robustness are quantified based on the mean and standard deviation of relative errors with respect to exact reliabilities, respectively. This study not only provides a review of classical and novel second-order reliability methods, but also gives an insight on the selection of an appropriate reliability method for a given engineering application.

Author(s):  
Zhangli Hu ◽  
Xiaoping Du

In traditional reliability problems, the distribution of a basic random variable is usually unimodal; in other words, the probability density of the basic random variable has only one peak. In real applications, some basic random variables may follow bimodal distributions with two peaks in their probability density. When binomial variables are involved, traditional reliability methods, such as the first-order second moment (FOSM) method and the first-order reliability method (FORM), will not be accurate. This study investigates the accuracy of using the saddlepoint approximation (SPA) for bimodal variables and then employs SPA-based reliability methods with first-order approximation to predict the reliability. A limit-state function is at first approximated with the first-order Taylor expansion so that it becomes a linear combination of the basic random variables, some of which are bimodally distributed. The SPA is then applied to estimate the reliability. Examples show that the SPA-based reliability methods are more accurate than FOSM and FORM.


Author(s):  
Xiaoping Du ◽  
Junfu Zhang

The widely used First Order Reliability Method (FORM) is efficient, but may not be accurate for nonlinear limit-state functions. The Second Order Reliability Method (SORM) is more accurate but less efficient. To maintain both high accuracy and efficiency, we propose a new second order reliability analysis method with first order efficiency. The method first performs the FORM and identifies the Most Probable Point (MPP). Then the associated limit-state function is decomposed into additive univariate functions at the MPP. Each univariate function is further approximated as a quadratic function, which is created with the gradient information at the MPP and one more point near the MPP. The cumulant generating function of the approximated limit-state function is then available so that saddlepoint approximation can be easily applied for computing the probability of failure. The accuracy of the new method is comparable to that of the SORM, and its efficiency is in the same order of magnitude as the FORM.


Author(s):  
Federico Barranco Cicilia ◽  
Alberto Omar Va´zquez Herna´ndez

Tether system is a critical component for the TLPs, since its failure may lead to the collapse of the whole structure involving human lives, economic losses and damages to the environment. Due to this fact, reliability methods have been proposed to design TLP tethers and new codes are being developed to increase their safety level. The objective of this paper is to compare the probability of failure for TLP tethers considering the maximum tension limit state obtained with three methods, which are: a methodology based on Evolutionary Strategies and the Monte Carlo Importance Sampling, the First Order Reliability Method, and the Second Order Reliability Method. Von-Mises failure criterion is used as limit state function for the most loaded tether of a TLP submitted to different sea states. Efficiency of the ES algorithm to find design points and probabilities of failure obtained with the reliability methods are discussed.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Dimitrios I. Papadimitriou ◽  
Zissimos P. Mourelatos

A reliability-based topology optimization (RBTO) approach is presented using a new mean-value second-order saddlepoint approximation (MVSOSA) method to calculate the probability of failure. The topology optimizer uses a discrete adjoint formulation. MVSOSA is based on a second-order Taylor expansion of the limit state function at the mean values of the random variables. The first- and second-order sensitivity derivatives of the limit state cumulant generating function (CGF), with respect to the random variables in MVSOSA, are computed using direct-differentiation of the structural equations. Third-order sensitivity derivatives, including the sensitivities of the saddlepoint, are calculated using the adjoint approach. The accuracy of the proposed MVSOSA reliability method is demonstrated using a nonlinear mathematical example. Comparison with Monte Carlo simulation (MCS) shows that MVSOSA is more accurate than mean-value first-order saddlepoint approximation (MVFOSA) and more accurate than mean-value second-order second-moment (MVSOSM) method. Finally, the proposed RBTO-MVSOSA method for minimizing a compliance-based probability of failure is demonstrated using two two-dimensional beam structures under random loading. The density-based topology optimization based on the solid isotropic material with penalization (SIMP) method is utilized.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Junfu Zhang ◽  
Xiaoping Du

The first-order reliability method (FORM) is efficient but may not be accurate for nonlinear limit-state functions. The second-order reliability method (SORM) is more accurate but less efficient. To maintain both high accuracy and efficiency, we propose a new second-order reliability analysis method with first-order efficiency. The method first performs the FORM to identify the most probable point (MPP). Then, the associated limit-state function is decomposed into additive univariate functions at the MPP. Each univariate function is further approximated by a quadratic function. The cumulant generating function of the approximated limit-state function is then available so that saddlepoint approximation can be easily applied in computing the probability of failure. The accuracy of the new method is comparable to that of the SORM, and its efficiency is in the same order of magnitude as the FORM.


Author(s):  
M. R. Khalessi ◽  
Y.-T. Wu ◽  
T. Y. Torng

Abstract This paper describes a new structural reliability analysis iteration procedure based on the concept of most probable point locus (MPPL). Using a new quadratic search algorithm, the proposed procedure examines the global behavior of the limit-state function, g, along the MPPL in the standard normal space in search of the most probable point (MPP) on the g = o surface, and identifies unusual conditions such as multiple MPPs. During the iteration procedure, the generated information is updated after each sensitivity analysis. This action helps the analyst to minimize the number of computer runs and determine the next step. By adopting two efficient convergence criteria, the proposed procedure is demonstrated to be significantly more efficient than the commonly used reliability analysis procedures, and is suitable to be integrated with existing general-purpose finite element computer programs for nondeterministic structural analysis.


Author(s):  
Dimitrios Papadimitriou ◽  
Zissimos P. Mourelatos

A reliability-based topology optimization (RBTO) approach is presented using a new mean-value second-order saddlepoint approximation (MVSOSA) method to calculate the probability of failure. The topology optimizer is based on a discrete adjoint formulation. MVSOSA is based on a second-order Taylor expansion of the limit state function at the mean values of the random variables. The first and second-order sensitivity derivatives of the limit state cumulant generating function with respect to the random variables in MVSOSA, are computed using direct-differentiation of the structural equations. Third-order sensitivity derivatives, including the sensitivities of the saddlepoint, are computed using the adjoint approach. The accuracy of the proposed MVSOSA reliability method is demonstrated using a nonlinear mathematical example. The results are compared with the available mean value first-order saddlepoint approximation (MVFOSA) method and Monte Carlo simulation. Finally, the proposed RBTO-MVSOSA method for minimizing compliance-based probability of failure, is demonstrated using two 2D beam structures under random loading.


Author(s):  
Zhangli Hu ◽  
Xiaoping Du

Abstract Reliability depends on time if the associated limit-state function includes time. A time-dependent reliability problem can be converted into a time-independent reliability problem by using the extreme value of the limit-state function. Then the first order reliability method can be used but it may produce a large error since the extreme limit-state function is usually highly nonlinear. This study proposes a new reliability method so that the second order reliability method can be applied to time-dependent reliability analysis for higher accuracy while maintaining high efficiency. The method employs sequential efficient global optimization to transform the time-dependent reliability analysis into the time-independent problem. The Hessian approximation and envelope theorem are used to obtain the second order information of the extreme limit-state function. Then the second order saddlepoint approximation is use to evaluate the reliability. The accuracy and efficiency of the proposed method are verified through numerical examples.


Author(s):  
Rami Mansour ◽  
Mårten Olsson

Abstract In the Second-Order Reliability Method, the limit-state function is approximated by a hyper-parabola in standard normal and uncorrelated space. However, there is no exact closed form expression for the probability of failure based on a hyper-parabolic limit-state function and the existing approximate formulas in the literature have been shown to have major drawbacks. Furthermore, in applications such as Reliability-based Design Optimization, analytical expressions, not only for the probability of failure but also for probabilistic sensitivities, are highly desirable for efficiency reasons. In this paper, a novel Second-Order Reliability Method is presented. The proposed expression is a function of three statistical measures: the Cornell Reliability Index, the skewness and the Kurtosis of the hyper-parabola. These statistical measures are functions of the First-Order Reliability Index and the curvatures at the Most Probable Point. Furthermore, analytical sensitivities with respect to mean values of random variables and deterministic variables are presented. The sensitivities can be seen as the product of the sensitivities computed using the First-Order Reliability Method and a correction factor. The proposed expressions are studied and their applicability to Reliability-based Design Optimization is demonstrated.


1998 ◽  
Vol 32 (1) ◽  
pp. 68-82 ◽  
Author(s):  
S. Mahadevan ◽  
X. Liu

This paper proposes a procedure for the optimum design of composite laminates under probabilistic considerations. The problem is formulated to consider the minimization of laminate weight as the objective function and the reliability requirements as the constraints. Both system-level and element-level reliabilities are considered. The first-order reliability method (FORM) is used to estimate the reliability of each ply group, and system reliability is computed based on series or parallel system assumptions. The Tsai-Wu strength criterion is adopted to derive the limit state function of individual ply groups in the laminate. The gradient and sensitivity information of the objective function and the constraints with respect to the design variables are obtained by using sensitivity analysis based on the composite plate theory. Thus the proposed procedure brings together modern concepts of reliability analysis, composite laminate behavior and nonlinear optimization to develop a rational and practical procedure for the optimum design of composite laminates. Numerical examples are presented to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document