Graft tension of the posterior cruciate ligament using a finite element model

2013 ◽  
Vol 22 (9) ◽  
pp. 2057-2063 ◽  
Author(s):  
Young-Jin Seo ◽  
Si Young Song ◽  
In Sung Kim ◽  
Myeong Jae Seo ◽  
Yoon Sang Kim ◽  
...  
2014 ◽  
Vol 2014 (1) ◽  
pp. 21 ◽  
Author(s):  
Achilles Vairis ◽  
Markos Petousis ◽  
Nectarios Vidakis ◽  
Betina Kandyla ◽  
Andreas-Marios Tsainis

2016 ◽  
Vol 48 ◽  
pp. 888 ◽  
Author(s):  
Edward Nyman ◽  
Marcel L. Ingels ◽  
Amirhesam Amerinatanzi ◽  
Rodney K. Summers ◽  
Timothy E. Hewett ◽  
...  

2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Feng Xie ◽  
Liu Yang ◽  
Lin Guo ◽  
Zhi-jun Wang ◽  
Gang Dai

To establish a finite element model that reflects the geometric characteristics of the normal anterior cruciate ligament (ACL), explore the approaches to model knee joint ligaments and analyze the mechanics of the model. A healthy knee joint specimen was subjected to three-dimensional laser scanning, and then a three-dimensional finite element model for the normal ACL was established using three-dimensional finite element software. Based on the model, the loads of the ACL were simulated to analyze the stress-strain relationship and stress distribution of the ACL. Using the ABAQUS software, a three-dimensional finite element model was established. The whole model contained 22,125 nodes and 46,411 units. In terms of geometric similarity and mesh precision, this model was superior to previous finite element models for the ACL. Through the introduction of material properties, boundary conditions, and loads, finite elements were analyzed and computed successfully. The relationship between overall nodal forces and the displacement of the ACL under anterior loads of the tibia was determined. In addition, the nephogram of the ACL stress spatial distribution was obtained. A vivid, three-dimensional model of the knee joint was established rapidly by using reverse engineering technology and laser scanning. The three-dimensional finite element method can be used for the ACL biomechanics research. The method accurately simulated the ACL stress distribution with the tibia under anterior loads, and the computational results were of clinical significance.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Xia Huang

In order to solve the problem of sports injury modeling of the anterior cruciate ligament, a method based on the intelligent finite element algorithm is proposed. Considering the transverse isotropy of the ligament, this paper constructs a 3D finite element model of the knee joint based on medical image data. The same ligament constitutive equation was used to fit the parameters of stress-strain mechanical experimental curves of three different anterior cruciate ligaments, and the effects of different anterior cruciate ligament mechanical parameters on kinematics and biomechanical properties of the knee joint were compared. The experimental results show that, in models 1, 2, and 3, the maximum stress values appear in the posterolateral of the femoral attachment area of the ligament, which are 16.24 MPa, 16.36 MPa, and 22.05 MPa, respectively. However, the stress values at the tibial attachment area are 9.80, 13.8, and 13.93 MPa, respectively, and the stress values at the anterolateral part of the middle ligament are 6.36, 11.89, and 12.26 MPa, respectively, which are all smaller than those at the femoral attachment area, which also quantitatively explains the clinical phenomenon that ACL fracture often occurs in the femoral attachment area in practice. Thus, the three-dimensional finite element model of the knee joint highly simulates the structure and material properties of the knee joint. This method proves that the intelligent finite element algorithm can effectively solve the modeling problem of sports injury of the anterior cruciate ligament.


Sign in / Sign up

Export Citation Format

Share Document