Thickness distribution and design of a multi-stage process for sheet metal incremental forming

2011 ◽  
Vol 62 (9-12) ◽  
pp. 981-988 ◽  
Author(s):  
Junchao Li ◽  
Jianbiao Hu ◽  
Junjie Pan ◽  
Pei Geng
2010 ◽  
Vol 97-101 ◽  
pp. 2810-2815 ◽  
Author(s):  
Yan Xu ◽  
Shuang Gao Li ◽  
Lin Gao

Incremental forming of sheet metal is difficult to be simulated for its complicated 3D loading path. In this work, an acceptable approach to generate 3D loading path, called “virtual guiding model method” is accomplished. The method, which has the similar idea with the conventional copy mill, is based on FEM and the basic principle of kinematics. With the help of the method, multi-stage incremental forming of a drawing typed square cup was simulated in the FEM software-PAMSTAMP and experimented. Through measuring the thickness distribution the vertical edge of the cup, the most difference between them is less than 0.05mm, which is satisfied with engineering request, and the results shows that the 3D loading path generating method is one of the most effective way to realize the incremental forming simulation.


2011 ◽  
Vol 337 ◽  
pp. 452-455 ◽  
Author(s):  
Zhao Bing Liu ◽  
Paul Meehan ◽  
Paul Bellette

Incremental Sheet Forming (ISF) is a promising sheet-metal-forming technology which is drawing more and more researchers’ attention due to its flexibility of manufacturing three-dimensional products at a relatively low cost for rapid prototyping and small-batch production. This paper is focused on the thickness distribution and the forming strategy analysis for two point incremental forming with a male die. The analyzed benchmark is half a torus which is generated by revolving a semi-circle. Such a part is hardly able to be formed by single point incremental forming because its slope varies from 0 degree to 90 degrees. In terms of the varying slope, the variant of sine’s law is derived to give an approximate prediction of the thickness distribution from an analytical perspective. In addition, a multi-stage forming strategy is proposed in order to form the part successfully. In particular, a keying operation is implemented carefully in order to avoid twist phenomenon and achieve good dimensional accuracy.


2011 ◽  
Vol 201-203 ◽  
pp. 99-102
Author(s):  
Hu Zhu ◽  
Zhi Jun Liu ◽  
Jaegwan Kang

A method of the digital simulation for the sheet metal CNC incremental forming was proposed based on the Z-map model. The tool extrusion movements were divided into two types according to the principle of sheet metal CNC incremental forming, i.e. vertical movement and horizontal movement. The vertical and horizontal swept volumes of the tool were built to intersect with the Z-map model of sheet metal respectively and the simulation models were generated. The thickness of deformed sheet metal was predicted and the thickness distribution chart was generated. The case studies show that the method can be applied to NC code verification, forming parameters optimization and formability prediction, moreover the system runs stably and reliably in the whole simulation process.


Author(s):  
Chetan P. Nikhare

Abstract A substantial increase in demand on the sheet metal part usage in aerospace and automotive industries is due to the increase in the sale of these products to ease the transportation. However, due to the increase in fuel prices and further environmental regulation had left no choice but to manufacture more fuel efficient and inexpensive vehicles. These heavy demands force researchers to think outside the box. Many innovative research projects came to replace the conventional sheet metal forming of which single point incremental forming is one of them. SPIF is the emerging die-less sheet metal forming process in which the single point tool incrementally forces any single point of sheet metal at any processing time to undergo plastic deformation. It has several advantages over the conventional process like high process flexibility, elimination of die, complex shape and better formability. Previous literature provides enormous research on formability of metal during this process, process with various metals and hybrid metals, the influence of various process parameter, but residual formability after this process is untouched. Thus, the aim of this paper is to investigate the residual formability of the formed parts using single point incremental forming and then restrike with a conventional tool. The common process parameters of single point incremental forming were varied, and residual formability was studied through the conventional process. The strain and thickness distribution were measured and analyzed. In addition, the forming limit of the part was plotted and compared.


Author(s):  
G. Hussain ◽  
L. Gao

Several aspects of Incremental Forming, an innovative sheet-metal-forming process, were studied. Firstly, an optimal combination of tool and lubricant was explored to form the TA1 (commercial Titanium) sheet-metal parts. Secondly, the effect of the tool diameter on the surface texture of a part was investigated. In addition to this, the influence of the tool diameter on in-plane strain distribution and thickness distribution along a part was also studied. Lastly, experiments were conducted in order to investigate the influence of half-apex angle on thickness distribution along a part to be formed. It has been concluded that the surface coating of sheet-blanks is essential to form the TA1 parts with good surface textures, and the dispersion of MoS2 powder in grease should be rubbed on the coated surface of the sheet-blank to provide lubrication between the tool tip (tip of a surface-hardened HSS tool) and the sheet-blank surface. Furthermore, the tool diameter has no effect on the texture of a formed surface, the deformation mode, and the in-plane strain distribution on a part. It has also been found that the tool diameter does not influence the thickness distribution along a part; rather this is governed by the Sine of half-apex angle of the part to be formed.


Sign in / Sign up

Export Citation Format

Share Document