Experimental and theoretical investigation of strain path change effect on forming limit diagram of AA5083

2014 ◽  
Vol 76 (5-8) ◽  
pp. 1343-1352 ◽  
Author(s):  
Farhad Zhalehfar ◽  
Ramin Hashemi ◽  
Seyed Jamal Hosseinipour
2012 ◽  
Vol 472-475 ◽  
pp. 653-656
Author(s):  
Jian Guang Liu ◽  
Qing Yuan Meng

Over the past decades, many kinds of double-sided pressure forming processes have been proposed to improve the formability of lightweight materials which exhibit distinctly poor forming capability. In the present study, the effects of double-sided pressure on the deformation behavior of AA5052-O aluminum alloy sheet metal under tension-compression deformation state are studied numerically using the finite element method based on the Gurson damage model. It is demonstrated that superimposed double-sided pressure significantly increases the left-side of the forming limit diagram and the formability increase value is sensitive to the strain path.


2012 ◽  
Vol 201-202 ◽  
pp. 1110-1116
Author(s):  
Mei Yang ◽  
Xiao Yan Zhang ◽  
Hao Wang

In this paper, the forming limit of a body-centered cubic (BCC) sheet metal under non-proportional strain-path is investigated by using the Marciniak and Kuczynski approach integrated with a rate-dependent crystal plasticity model. The prediction model has been proved to be effective in predicting Forming Limit Diagram (FLD) of anisotropic sheet metal with FCC type of slip systems[1]. The same model has been used to study the FLD under non-proportional strain-path of BCC slip systems numerically and experimentally. The agreement between the experiments and simulations is good. With crystal plasticity model well describing the crystal microstructure effect, our model can be used to predict the FLD of BCC sheet metal under complicated strain path in plastic forming process with good accuracy.


2015 ◽  
Vol 10 (2) ◽  
pp. 255-266 ◽  
Author(s):  
Nitin Kotkunde ◽  
Geetha Krishna ◽  
Shyam Krishna Shenoy ◽  
Amit Kumar Gupta ◽  
Swadesh Kumar Singh

2019 ◽  
Vol 19 (2) ◽  
pp. 83-98 ◽  
Author(s):  
Lemopi Isidore BESONG ◽  
Johannes BUHL ◽  
Markus BAMBACH

This research investigates a novel hole-flanging process by paddle forming through the use of finite element (FE) simulations. Paddles of different shapes rotating at high speeds were used to deform clamped sheets with pre-drilled holes at their centers. The results of the simulations show that the paddle shape determines the geometry and principal strains of the formed flanges. A convex-shaped paddle forms flanges with predominant strains in the left quadrant of the forming limit diagram (FLD). However, the convex paddle promotes unwanted bulge formation at the clamped end of the flange. A concave paddle forms flanges with no bulge but the principal strains of elements in the middle section of the flange are in the right quadrant of the FLD which indicates an increased probability for crack occurrence. An optimization of the paddle shape was conducted to prevent bulging at the clamped end while avoiding crack occurrence. The paddle shape was optimized by mapping the deformation of some elements along the flange length to a pre-defined strain path on the FLD while maintaining the bulge height within the desired geometric tolerance. The radii and lengths of the paddle edge were varied to obtain an optimum paddle shape.


Sign in / Sign up

Export Citation Format

Share Document