scholarly journals Development of novel tools for electricity-assisted incremental sheet forming of titanium alloy

2015 ◽  
Vol 85 (5-8) ◽  
pp. 1137-1144 ◽  
Author(s):  
Runze Liu ◽  
Bin Lu ◽  
Dongkai Xu ◽  
Jun Chen ◽  
Fei Chen ◽  
...  
2021 ◽  
Vol 5 (4) ◽  
pp. 122
Author(s):  
Badreddine Saidi ◽  
Laurence Giraud Moreau ◽  
Abel Cherouat ◽  
Rachid Nasri

Incremental forming is a recent forming process that allows a sheet to be locally deformed with a hemispherical tool in order to gradually shape it. Despite good lubrication between the sheet and the tip of the smooth hemisphere tool, ductility often occurs, limiting the formability of titanium alloys due to the geometrical inaccuracy of the parts and the inability to form parts with a large depth and wall angle. Several technical solutions are proposed in the literature to increase the working temperature, allowing improvement in the titanium alloys’ formability and reducing the sheet thinning, plastic instability, and failure localization. An experimental procedure and numerical simulation were performed in this study to improve the warm single-point incremental sheet forming of a deep truncated cone in Ti-6Al-4V titanium alloy based on the use of heating cartridges. The effect of the depth part (two experiments with a truncated cone having a depth of 40 and 60 mm) at hot temperature (440 °C) on the thickness distribution and sheet shape accuracy are performed. Results show that the formability is significantly improved with the heating to produce a deep part. Small errors are observed between experimental and theoretical profiles. Moreover, errors between experimental and numerical displacements are less than 6%, which shows that the Finite Element (FE) model gives accurate predictions for titanium alloy deep truncated cones.


2010 ◽  
Vol 102-104 ◽  
pp. 348-352 ◽  
Author(s):  
Fei Han ◽  
Jian Hua Mo ◽  
Pei Wang ◽  
Ying Zhe Deng

In order to alleviate the suffering of the patients with skull defects, this paper presents a detailed analysis of incremental sheet forming (ISF) method to shape skull prosthesis of titanium alloy meshed plate. In the study, we emphasized the following points: First, we designed and made skull model based on computed tomography image, and extracted the skull defect data using reverse engineering technology, then we reconstructed the surface of the prosthesis and designed it’s three dimentional model, finally, we adjusted tool path repeatedly and then imported the tool path into incremental sheet forming system to shape skull prosthesis. This paper provides a fast and accurate prosthesis manufacture method of titanium alloy meshed plate, which can improve the level of the skull repair technique.


Author(s):  
Abdulmajeed Dabwan ◽  
Adham E Ragab ◽  
Mohamed A Saleh ◽  
Atef M Ghaleb ◽  
Mohamed Z Ramadan ◽  
...  

Incremental sheet forming is a specific group of sheet forming methods that enable the manufacture of complex parts utilizing computer numerical control instead of specialized tools. It is an incredibly adaptable operation that involves minimal usage of sophisticated tools, dies, and forming presses. Besides its main application in the field of rapid prototyping, incremental sheet forming processes can be used for the manufacture of unique parts in small batches. The goal of this study is to broaden the knowledge of the deformation process in single-point incremental forming. This work studies the deformation behavior in single-point incremental forming by experimentally investigating the principal stresses, principal strains, and thinning of single-point incremental forming products. Conical-shaped components are fabricated using AA1050-H14 aluminum alloy at various combinations of fundamental variables. The factorial design is employed to plan the experimental study and analysis of variance is conducted to analyze the results. The grey relational analysis approach coupled with entropy weights is also implemented to identify optimum process variables for single-point incremental forming. The results show that the tool diameter has the greatest effect on the thinning of the SPIF product, followed by the sheet thickness, step size, and feed rate.


Author(s):  
Yan-Le Li ◽  
Zi-Jian Wang ◽  
Wei-Dong Zhai ◽  
Zi-Nan Cheng ◽  
Fang-Yi Li ◽  
...  

2014 ◽  
Vol 77 (1-4) ◽  
pp. 469-483 ◽  
Author(s):  
Tingting Cao ◽  
Bin Lu ◽  
Dongkai Xu ◽  
Huan Zhang ◽  
Jun Chen ◽  
...  

2007 ◽  
Vol 344 ◽  
pp. 511-518 ◽  
Author(s):  
Markus Bambach ◽  
M. Todorova ◽  
Gerhard Hirt

Asymmetric incremental sheet forming (AISF) is a relatively new manufacturing process for the production of low volumes of sheet metal parts. Forming is accomplished by the CNC controlled movements of a simple ball-headed tool that follows a 3D trajectory to gradually shape the sheet metal blank. Due to the local plastic deformation under the tool, there is almost no draw-in from the flange region to avoid thinning in the forming zone. As a consequence, sheet thinning limits the amount of bearable deformation, and thus the range of possible applications. Much attention has been given to the maximum strains that can be attained in AISF. Several authors have found that the forming limits are considerably higher than those obtained using a Nakazima test and that the forming limit curve is approximately a straight line (mostly having a slope of -1) in the stretching region of the FLD. Based on these findings they conclude that the “conventional” forming limit curves cannot be used for AISF and propose dedicated tests to record forming limit diagrams for AISF. Up to now, there is no standardised test and no evaluation procedure for the determination of FLCs for AISF. In the present paper, we start with an analysis of the range of strain states and strain paths that are covered by the various tests that can be found in the literature. This is accomplished by means of on-line deformation measurements using a stereovision system. From these measurements, necking and fracture limits are derived. It is found that the fracture limits can be described consistently by a straight line with negative slope. The necking limits seem to be highly dependent on the test shapes and forming parameters. It is concluded that standardisation in both testing conditions and the evaluation procedures is necessary, and that a forming limit curve does not seem to be an appropriate tool to predict the feasibility of a given part design.


Sign in / Sign up

Export Citation Format

Share Document