Experimental and numerical study on warm single-point incremental sheet forming (WSPIF) of titanium alloy Ti–6Al–4V, using cartridge heaters

Author(s):  
Badreddine Saidi ◽  
Laurence Giraud Moreau ◽  
Abel Cherouat ◽  
Rachid Nasri
2021 ◽  
Vol 5 (4) ◽  
pp. 122
Author(s):  
Badreddine Saidi ◽  
Laurence Giraud Moreau ◽  
Abel Cherouat ◽  
Rachid Nasri

Incremental forming is a recent forming process that allows a sheet to be locally deformed with a hemispherical tool in order to gradually shape it. Despite good lubrication between the sheet and the tip of the smooth hemisphere tool, ductility often occurs, limiting the formability of titanium alloys due to the geometrical inaccuracy of the parts and the inability to form parts with a large depth and wall angle. Several technical solutions are proposed in the literature to increase the working temperature, allowing improvement in the titanium alloys’ formability and reducing the sheet thinning, plastic instability, and failure localization. An experimental procedure and numerical simulation were performed in this study to improve the warm single-point incremental sheet forming of a deep truncated cone in Ti-6Al-4V titanium alloy based on the use of heating cartridges. The effect of the depth part (two experiments with a truncated cone having a depth of 40 and 60 mm) at hot temperature (440 °C) on the thickness distribution and sheet shape accuracy are performed. Results show that the formability is significantly improved with the heating to produce a deep part. Small errors are observed between experimental and theoretical profiles. Moreover, errors between experimental and numerical displacements are less than 6%, which shows that the Finite Element (FE) model gives accurate predictions for titanium alloy deep truncated cones.


Author(s):  
Abdulmajeed Dabwan ◽  
Adham E Ragab ◽  
Mohamed A Saleh ◽  
Atef M Ghaleb ◽  
Mohamed Z Ramadan ◽  
...  

Incremental sheet forming is a specific group of sheet forming methods that enable the manufacture of complex parts utilizing computer numerical control instead of specialized tools. It is an incredibly adaptable operation that involves minimal usage of sophisticated tools, dies, and forming presses. Besides its main application in the field of rapid prototyping, incremental sheet forming processes can be used for the manufacture of unique parts in small batches. The goal of this study is to broaden the knowledge of the deformation process in single-point incremental forming. This work studies the deformation behavior in single-point incremental forming by experimentally investigating the principal stresses, principal strains, and thinning of single-point incremental forming products. Conical-shaped components are fabricated using AA1050-H14 aluminum alloy at various combinations of fundamental variables. The factorial design is employed to plan the experimental study and analysis of variance is conducted to analyze the results. The grey relational analysis approach coupled with entropy weights is also implemented to identify optimum process variables for single-point incremental forming. The results show that the tool diameter has the greatest effect on the thinning of the SPIF product, followed by the sheet thickness, step size, and feed rate.


2015 ◽  
Vol 85 (5-8) ◽  
pp. 1137-1144 ◽  
Author(s):  
Runze Liu ◽  
Bin Lu ◽  
Dongkai Xu ◽  
Jun Chen ◽  
Fei Chen ◽  
...  

2007 ◽  
Author(s):  
P. Eyckens ◽  
S. He ◽  
A. Van Bael ◽  
P. Van Houtte ◽  
J. Duflou

2019 ◽  
Vol 160 ◽  
pp. 75-89
Author(s):  
Kai Han ◽  
Xiaoqiang Li ◽  
Xingyi Peng ◽  
Haibo Wang ◽  
Dongsheng Li ◽  
...  

Author(s):  
Shamik Basak ◽  
K Sajun Prasad ◽  
Amarjeet Mehto ◽  
Joy Bagchi ◽  
Y Shiva Ganesh ◽  
...  

Prototyping through incremental sheet forming is emerging as a latest trend in the manufacturing industries for fabricating personalized components according to customer requirement. In this study, a laboratory scale single-point incremental forming test setup was designed and fabricated to deform AA6061 sheet metal plastically. In addition, response surface methodology with Box–Behnken design technique was used to establish different regression models correlating input process parameters with mechanical responses such as angle of failure, part depth per unit time and surface roughness. Correspondingly, the regression models were implemented to optimize the input process parameters, and the predicted responses were successfully validated at the optimal conditions. It was observed that the predicted absolute error for angle of failure, part depth per unit time and surface roughness responses was approximately 0.9%, 4.4% and 6.3%, respectively, for the optimum parametric combination. Furthermore, the post-deformation responses from an optimized single point incremental forming truncated cone were correlated with microstructural evolution. It was observed that the peak hardness and highest areal surface roughness of 158 ± 9 HV and 1.943 μm, respectively, were found near to the pole of single-point incremental forming truncated cone, and the highest major plastic strain at this region was 0.80. During incremental forming, a significant increase in microhardness occurred due to grain refinement, whereas a substantial increase in the Brass and S texture component was responsible for the increase in the surface roughness.


2015 ◽  
Vol 639 ◽  
pp. 535-542 ◽  
Author(s):  
Bin Lu ◽  
Dong Kai Xu ◽  
Run Zhe Liu ◽  
Heng An Ou ◽  
Hui Long ◽  
...  

Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Comparing to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized products such as cranial implant. Although effort on cranial reconstruction by using incremental sheet forming approach has been made in recent years, research has been mostly based on the single point incremental forming (SPIF) strategy and there are still considerable technical challenges for achieving better geometric accuracy, thickness distribution and complex cranial shape. In addition, the use of a backing plate or supporting die reduces the process flexibility and increases the cost. To overcome these limitations, double side incremental sheet forming (DSIF) process is employed for forming Grade 1 pure titanium sheet by using different toolpath strategies. The geometric accuracy and thickness distribution of the final part are evaluated so the optimized tool path strategies are developed. This leads to an assessment of the DSIF based approach for the application in cranial reconstruction.


2013 ◽  
Vol 554-557 ◽  
pp. 1419-1431 ◽  
Author(s):  
Daniel Fritzen ◽  
Anderson Daleffe ◽  
Jovani Castelan ◽  
Lirio Schaeffer

This work addresses through bibliographies and experiments the behavior of sheet brass 70/30 for Incremental Sheet Forming process - ISF, based on the parameters: wall angle (), step vertical (ΔZ) strategy and the way the tool. Experiments based on the method called Single Point Incremental Forming - SPIF. For execution of practical tests, we used the resources: software CAD / CAM, CNC machining center with three axles, matrix incremental, incremental forming tool and a device press sheets. Furthermore, measurement was made of the true deformation () and thickness (s1). Practical tests have shown that the spiral machining strategy yielded a greater wall angle, compared to the conventional strategy outline.


2022 ◽  
Author(s):  
Weining Li ◽  
Khamis Essa ◽  
Sheng Li

Abstract For heat-assisted single point incremental sheet forming (SPIF) works of Ti-6Al-4V sheets, the use of lubricant has shown significant effects on surface quality and geometric accuracy at higher temperatures. Molybdenum disulphide (MoS2) is a common lubricant widely used in SPIF works, however, it usually indicates ineffective performance at high temperatures. This article has studied different lubricants of MoS2 lubricants and proposed a novel mixture of MoS2 to provide better surface quality and improve geometric accuracy. A forming tool with a ball-roller and water channel was designed to enable the MoS2 mixture to pass through the tool tip, allowing easy application of the lubricant on the localised area and reduce the thermal expansion on the ball-roller. Surface roughness analysis has revealed that the water-cooling MoS2 mixture performed well in reducing friction effects and achieved better geometric accuracy. Forming forces measurements, scanning electron microscope (SEM), energy dispersive X-ray Analysis (EDX) and micro-hardness tests also indicated that a higher strain hardening behaviour was detected for the water-cooling MoS2 mixture.


Sign in / Sign up

Export Citation Format

Share Document