scholarly journals Accuracy and Sheet Thinning Improvement of Deep Titanium Alloy Part with Warm Incremental Sheet-Forming Process

2021 ◽  
Vol 5 (4) ◽  
pp. 122
Author(s):  
Badreddine Saidi ◽  
Laurence Giraud Moreau ◽  
Abel Cherouat ◽  
Rachid Nasri

Incremental forming is a recent forming process that allows a sheet to be locally deformed with a hemispherical tool in order to gradually shape it. Despite good lubrication between the sheet and the tip of the smooth hemisphere tool, ductility often occurs, limiting the formability of titanium alloys due to the geometrical inaccuracy of the parts and the inability to form parts with a large depth and wall angle. Several technical solutions are proposed in the literature to increase the working temperature, allowing improvement in the titanium alloys’ formability and reducing the sheet thinning, plastic instability, and failure localization. An experimental procedure and numerical simulation were performed in this study to improve the warm single-point incremental sheet forming of a deep truncated cone in Ti-6Al-4V titanium alloy based on the use of heating cartridges. The effect of the depth part (two experiments with a truncated cone having a depth of 40 and 60 mm) at hot temperature (440 °C) on the thickness distribution and sheet shape accuracy are performed. Results show that the formability is significantly improved with the heating to produce a deep part. Small errors are observed between experimental and theoretical profiles. Moreover, errors between experimental and numerical displacements are less than 6%, which shows that the Finite Element (FE) model gives accurate predictions for titanium alloy deep truncated cones.

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6372
Author(s):  
Valentin Oleksik ◽  
Tomasz Trzepieciński ◽  
Marcin Szpunar ◽  
Łukasz Chodoła ◽  
Daniel Ficek ◽  
...  

Incremental sheet forming of titanium and its alloys has a significant role in modern manufacturing techniques because it allows for the production of high-quality products with complex shapes at low production costs. Stamping processes are a major contributor to plastic working techniques in industries such as automotive, aerospace and medicine. This article reviews the development of the single-point incremental forming (SPIF) technique in titanium and its alloys. Problems of a tribological and microstructural nature that make it difficult to obtain components with the desired geometric and shape accuracy are discussed. Great emphasis is placed on current trends in SPIF of difficult-to-form α-, α + β- and β-type titanium alloys. Potential uses of SPIF for forming products in various industries are also indicated, with a particular focus on medical applications. The conclusions of the review provide a structured guideline for scientists and practitioners working on incremental forming of titanium and titanium alloy sheets. One of the ways to increase the formability and minimize the springback of titanium alloys is to treat them at elevated temperatures. The main approaches developed for introducing temperature into a workpiece are friction heating, electrical heating and laser heating. The selection of an appropriate lubricant is a key aspect of the forming process of titanium and its alloys, which exhibit unfavorable tribological properties such as high adhesion and a tendency to adhesive wear. A review of the literature showed that there are insufficient investigations into the synergistic effect of rotational speed and tool rotation direction on the surface roughness of workpieces.


Author(s):  
Shamik Basak ◽  
K Sajun Prasad ◽  
Amarjeet Mehto ◽  
Joy Bagchi ◽  
Y Shiva Ganesh ◽  
...  

Prototyping through incremental sheet forming is emerging as a latest trend in the manufacturing industries for fabricating personalized components according to customer requirement. In this study, a laboratory scale single-point incremental forming test setup was designed and fabricated to deform AA6061 sheet metal plastically. In addition, response surface methodology with Box–Behnken design technique was used to establish different regression models correlating input process parameters with mechanical responses such as angle of failure, part depth per unit time and surface roughness. Correspondingly, the regression models were implemented to optimize the input process parameters, and the predicted responses were successfully validated at the optimal conditions. It was observed that the predicted absolute error for angle of failure, part depth per unit time and surface roughness responses was approximately 0.9%, 4.4% and 6.3%, respectively, for the optimum parametric combination. Furthermore, the post-deformation responses from an optimized single point incremental forming truncated cone were correlated with microstructural evolution. It was observed that the peak hardness and highest areal surface roughness of 158 ± 9 HV and 1.943 μm, respectively, were found near to the pole of single-point incremental forming truncated cone, and the highest major plastic strain at this region was 0.80. During incremental forming, a significant increase in microhardness occurred due to grain refinement, whereas a substantial increase in the Brass and S texture component was responsible for the increase in the surface roughness.


2015 ◽  
Vol 639 ◽  
pp. 535-542 ◽  
Author(s):  
Bin Lu ◽  
Dong Kai Xu ◽  
Run Zhe Liu ◽  
Heng An Ou ◽  
Hui Long ◽  
...  

Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Comparing to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized products such as cranial implant. Although effort on cranial reconstruction by using incremental sheet forming approach has been made in recent years, research has been mostly based on the single point incremental forming (SPIF) strategy and there are still considerable technical challenges for achieving better geometric accuracy, thickness distribution and complex cranial shape. In addition, the use of a backing plate or supporting die reduces the process flexibility and increases the cost. To overcome these limitations, double side incremental sheet forming (DSIF) process is employed for forming Grade 1 pure titanium sheet by using different toolpath strategies. The geometric accuracy and thickness distribution of the final part are evaluated so the optimized tool path strategies are developed. This leads to an assessment of the DSIF based approach for the application in cranial reconstruction.


2013 ◽  
Vol 554-557 ◽  
pp. 1419-1431 ◽  
Author(s):  
Daniel Fritzen ◽  
Anderson Daleffe ◽  
Jovani Castelan ◽  
Lirio Schaeffer

This work addresses through bibliographies and experiments the behavior of sheet brass 70/30 for Incremental Sheet Forming process - ISF, based on the parameters: wall angle (), step vertical (ΔZ) strategy and the way the tool. Experiments based on the method called Single Point Incremental Forming - SPIF. For execution of practical tests, we used the resources: software CAD / CAM, CNC machining center with three axles, matrix incremental, incremental forming tool and a device press sheets. Furthermore, measurement was made of the true deformation () and thickness (s1). Practical tests have shown that the spiral machining strategy yielded a greater wall angle, compared to the conventional strategy outline.


Author(s):  
Harish K. Nirala ◽  
Anupam Agrawal

Single point incremental sheet forming (SPISF) technique is an emerging process for die less forming. It has wide applications in many industries viz. automobile and medical bone transplants. Among several key parameters, toolpath planning is one of the critical aspects of SPISF. Also, formability and geometric accuracy have been the two major limitations in SPISF. Spiral and constant incremental toolpaths and their variants have been investigated in detail by several researchers. Fractal-based toolpath planning is also an attempt to improve the process of SPISF. Formability is measured in terms of thickness distribution and maximum forming depth achieved. This paper investigates a fractal geometry-based incremental toolpath (FGBIT) strategy to form a square cup using incremental sheet forming (ISF). Fractal toolpath is a space-filling toolpath which is developed by the fractal geometry theory. A comparison-based study is conducted to observe the benefits of using FGBIT over traditional toolpaths (spiral and constant Z). Better formability, stress, and thickness distribution have been observed by adopting the proposed toolpath strategy. This toolpath strategy is new in its kind and has not been investigated in the metal forming domain. Experiments and simulations are conducted to validate the concept with reasonable accuracy.


2019 ◽  
Vol 34 ◽  
pp. 940-949 ◽  
Author(s):  
Joseph D. Fischer ◽  
Mitchell R. Woodside ◽  
Mercedes M. Gonzalez ◽  
Nathan A. Lutes ◽  
Douglas A. Bristow ◽  
...  

Author(s):  
Huan Zhang ◽  
Bin Lu ◽  
Jun Chen ◽  
Sule Feng ◽  
Zongquan Li ◽  
...  

Incremental sheet forming is a cost-effective process for rapid manufacturing of sheet metal products. However, incremental sheet forming also has some limitations such as severe sheet thinning and long processing time. These limitations hamper the forming part quality and production efficiency, thus restricting the incremental sheet forming application in industrial practice. To overcome the problem of sheet thinning, a variety of processes, such as multi-step incremental sheet forming, have been proposed to improve the material flow and thickness distribution. In this work, a new process has been developed by introducing multi-point forming as preforming step before conducting incremental sheet forming processing. Employing an established hybrid sheet forming system and the corresponding thickness prediction model, the preform shape can be optimized by employing a two-step optimization approach to improve the sheet thickness distribution. In total, two case study examples, including a hemisphere part and an aerospace cowling part, are fabricated using the developed hybrid flexible process in this study. The experimental results show that the hybrid flexible forming process with the optimal preform design could achieve sheet parts with more uniform thickness distribution and reduced forming time.


2016 ◽  
Vol 725 ◽  
pp. 578-585 ◽  
Author(s):  
Zhao Bing Liu ◽  
Paul Anthony Meehan

Incremental Sheet Forming (ISF) is a promising rapid prototyping technology used to form complex three-dimensional shapes. For forming a part with severely sloped regions, design of multi-stage deformation passes (intermediate shapes or preforms) before the final part, is widely adopted as a desirable and practical way to control the material flow in order to obtain a more uniform thickness distribution and avoid forming failure. However, a problem sometimes encountered in multi-pass forming is wrinkling deformation between two adjacent deformation passes. This may lead to forming process instability and even fracture. The overall quality of the final part may also deteriorate even if the part is formed successfully. In this paper, the wrinkling phenomenon in multi-pass incremental sheet forming is investigated by means of finite element analysis (FEA) and experimental tests to analyse the wrinkling formation mechanism. This research gives an insight into the optimized design of deformation passes in order to eliminate the unwanted wrinkling deformation in multi-pass incremental forming process.


Sign in / Sign up

Export Citation Format

Share Document