skull model
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 39)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Les Kalman ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Talita Suelen de Queiroz ◽  
João Paulo Mendes Tribst

Background: Orofacial injuries are common occurrences during contact sports activities. However, there is an absence of data regarding the performance of hybrid occlusal splint mouthguards (HMG), especially during compressive loading. This study amid to evaluate the biomechanical effects of wearing a conventional custom mouthguard (MG) or the HMG on the teeth, bone, and the device itself. Methods: To evaluate the total deformation and stress concentration, a skull model was selected and duplicated to receive two different designs of mouthguard device: one model received a MG with 4-mm thickness and the other received a novel HMG with the same thickness. Both models were subdivided into finite elements. The frictionless contacts were used, and a nonlinear analysis was performed simulating the compressive loading in occlusion. Results: The results were presented in von-Mises stress maps (MPa) and total deformation (mm). A higher stress concentration in teeth was observed for the model with the conventional MG, while the HMG design displayed a promising mechanical response with lower stress magnitude. The HMG design displayed a higher magnitude of stress on its occlusal portion (7.05 MPa) than the MG design (6.19 MPa). Conclusion: The hybrid mouthguard (HMG) reduced (1) jaw displacement during chewing and (2) the generated stresses in maxillary and mandibular teeth.


2021 ◽  
pp. 1-7

OBJECTIVE The objective of this study is to quantify the navigational accuracy of an advanced augmented reality (AR)–based guidance system for neurological surgery, biopsy, and/or other minimally invasive neurological surgical procedures. METHODS Five burr holes were drilled through a plastic cranium, and 5 optical fiducials (AprilTags) printed with CT-visible ink were placed on the frontal, temporal, and parietal bones of a human skull model. Three 0.5-mm-diameter targets were mounted in the interior of the skull on nylon posts near the level of the tentorium cerebelli and the pituitary fossa. The skull was filled with ballistic gelatin to simulate brain tissue. A CT scan was taken and virtual needle tracts were annotated on the preoperative 3D workstation for the combination of 3 targets and 5 access holes (15 target tracts). The resulting annotated study was uploaded to and launched by VisAR software operating on the HoloLens 2 holographic visor by viewing an encrypted, printed QR code assigned to the study by the preoperative workstation. The DICOM images were converted to 3D holograms and registered to the skull by alignment of the holographic fiducials with the AprilTags attached to the skull. Five volunteers, familiar with the VisAR, used the software/visor combination to navigate an 18-gauge needle/trocar through the series of burr holes to the target, resulting in 70 data points (15 for 4 users and 10 for 1 user). After each attempt the needle was left in the skull, supported by the ballistic gelatin, and a high-resolution CT was taken. Radial error and angle of error were determined using vector coordinates. Summary statistics were calculated individually and collectively. RESULTS The combined angle of error of was 2.30° ± 1.28°. The mean radial error for users was 3.62 ± 1.71 mm. The mean target depth was 85.41 mm. CONCLUSIONS The mean radial error and angle of error with the associated variance measures demonstrates that VisAR navigation may have utility for guiding a small needle to neural lesions, or targets within an accuracy of 3.62 mm. These values are sufficiently accurate for the navigation of many neurological procedures such as ventriculostomy.


2021 ◽  
pp. 159101992110609
Author(s):  
Rosalie Morrish ◽  
Ronan Corcoran ◽  
Jillian Cooke ◽  
Muneer Eesa ◽  
John H Wong ◽  
...  

Background Five to ten percent of the global population have unruptured intracranial aneurysms, and ruptured brain aneurysms cause approximately 500,000 deaths a year. Flow-diverting stent treatment is a less invasive intracranial aneurysm treatment that induces aneurysm thrombosis. The imaging characteristics of a novel primarily bioresorbable flow-diverting stent (BFDS) are assessed in comparison to the leading metal stent using fluoroscopy, CT, and MRI. Methods X-ray/fluoroscopic images of stents were taken using a human cadaveric skull model. CT and MRI were acquired using silicone flow models of residual aneurysms. Images were analyzed with Likert scales in anonymous surveys by neurointerventionalists. Quantitative measurements of radiographic density (CT) and artifact boundary size (CT & MRI) were also obtained. Results Visibility of the BFDS on X-ray was less than the metal stent but deemed adequate for deployment and intraprocedural assessment. The metal stent was more radiopaque than the BFDS on CT, but qualitative assessment was not significantly different for the two stents. MRI imaging was significantly better using the BFDS in terms of overall artifact and intraluminal assessment. Conclusions The BFDS has adequate visualization on X-ray/fluoroscopy and should be clinically acceptable for fluoroscopic deployment. On MRI, there is less quantitative artifact as well as overall improved qualitative assessment that will allow for more detailed non-invasive imaging follow-up of treated aneurysms, potentially reducing the need for digital subtraction catheter angiography.


2021 ◽  
Vol 11 (21) ◽  
pp. 10483
Author(s):  
Mucahit Calisan ◽  
Muhammed Fatih Talu ◽  
Danil Yurievich Pimenov ◽  
Khaled Giasin

In this study, the skull bone thicknesses of 150 patients ranging in age from 0 to 72 years were calculated using a novel approach (thermal analysis), and thickness changes were analyzed. Unlike conventional thickness calculation approaches (Beam Propagation, Hildebrand), a novel heat transfer-based approach was developed. Firstly, solid 3D objects with different thicknesses were modeled, and thermal analyses were performed on these models. To better understand the heat transfer of 3D object models, finite element models (FEM) of the human head have been reported in the literature. The FEM can more accurately model the complex geometry of a 3D human head model. Then, thermal analysis was performed on human skulls using the same methods. Thus, the skull bone thicknesses at different ages and in different genders from region to region were determined. The skull model was transferred to ANSYS, and it was meshed using different mapping parameters. The heat transfer results were determined by applying different heat values to the inner and outer surfaces of the skull mesh structure. Thus, the average thicknesses of skull regions belonging to a certain age group were obtained. With this developed method, it was observed that the temperature value applied to the skull was proportional to the thickness value. The average thickness of skull bones for men (frontal: 7.8 mm; parietal: 9.6 mm; occipital: 10.1 mm; temporal: 6 mm) and women (frontal: 8.6 mm; parietal: 10.1 mm; occipital: 10 mm; temporal: 6 mm) are given. The difference (10%) between men and women appears to be statistically significant only for frontal bone thickness. Thanks to the developed method, bone thickness information at any desired point on the skull can be obtained numerically. Therefore, the proposed method can be used to help pre-operative planning of surgical procedures.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5962
Author(s):  
Hao Zhang ◽  
Yanqiu Zhang ◽  
Minpeng Xu ◽  
Xizi Song ◽  
Shanguang Chen ◽  
...  

Transcranial focused ultrasound (tFUS) has great potential in brain imaging and therapy. However, the structural and acoustic differences of the skull will cause a large number of technical problems in the application of tFUS, such as low focus energy, focal shift, and defocusing. To have a comprehensive understanding of the skull effect on tFUS, this study investigated the effects of the structural parameters (thickness, radius of curvature, and distance from the transducer) and acoustic parameters (density, acoustic speed, and absorption coefficient) of the skull model on tFUS based on acrylic plates and two simulation methods (self-programming and COMSOL). For structural parameters, our research shows that as the three factors increase the unit distance, the attenuation caused from large to small is the thickness (0.357 dB/mm), the distance to transducer (0.048 dB/mm), and the radius of curvature (0.027 dB/mm). For acoustic parameters, the attenuation caused by density (0.024 dB/30 kg/m3) and acoustic speed (0.021 dB/30 m/s) are basically the same. Additionally, as the absorption coefficient increases, the focus acoustic pressure decays exponentially. The thickness of the structural parameters and the absorption coefficient of the acoustic parameters are the most important factors leading to the attenuation of tFUS. The experimental and simulation trends are highly consistent. This work contributes to the comprehensive and quantitative understanding of how the skull influences tFUS, which further enhances the application of tFUS in neuromodulation research and treatment.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Seon Mi Yun ◽  
Kun Hwang ◽  
Chan Yong Park

Sign in / Sign up

Export Citation Format

Share Document