Influence of process parameters of ultrasonic shot peening on surface nanocrystallization and hardness of pure titanium

2016 ◽  
Vol 89 (5-8) ◽  
pp. 1451-1468 ◽  
Author(s):  
Lihua Zhu ◽  
Yanjin Guan ◽  
Yanjie Wang ◽  
Zhendong Xie ◽  
Jun Lin
2013 ◽  
Vol 768-769 ◽  
pp. 503-509 ◽  
Author(s):  
Jawad Badreddine ◽  
Emmanuelle Rouhaud ◽  
Matthieu Micoulaut ◽  
Sebastien Remy ◽  
Vincent Desfontaine ◽  
...  

This paper presents a 3D model that simulates an ultrasonic shot peening (USP) operation, using realistic process parameters and peening setups (part and chamber geometries). By simulating the shot dynamics (shot trajectories and impacts), statistical and spatial data are obtained for the peened component, i.e. surface coverage and coverage rate, impact speeds and angles, dissipated energy... This data can then be used for i) optimizing the design of peening chambers and process parameters and ii) predicting the residual stress and displacement fields induced by USP in the peened component. In fact, data from the 3D model can be used as initial data in existing residual stress prediction models. A chaining methodology was developed for this purpose and allows linking the choice of process parameters and USP setup to the induced residual stress displacement fields.


2005 ◽  
Vol 490-491 ◽  
pp. 67-72 ◽  
Author(s):  
C. Pilé ◽  
Manuel François ◽  
Delphine Retraint ◽  
Emmanuelle Rouhaud ◽  
Jian Lu

The aim of this work is to reach a better understanding of the ultrasonic shot-peening process and, in particular, the evolution of the shot speed distribution. A simple 1D modelling of the interaction between the shots and the sonotrode is carried out. The impact is considered as inelastic with an energy absorption that depends on the speed of the shot. It is found that after about 10 interactions (» 1s) the speed distribution in the chamber follows a Maxwell-Boltzmann distribution, which is the distribution found in a perfect gas at equilibrium. The influence of various process parameters such as the sonotrode amplitude, the vibration frequency on the average speed and on the Almen intensity is studied.


2011 ◽  
Vol 675-677 ◽  
pp. 239-242
Author(s):  
Chun Huan Chen ◽  
Cheng Jin ◽  
Rui Ming Ren

The effect of the strain rate on the surface nanocrystallization of titanium is investigated both theoretically and experimentally in this paper. The strain rate variation and stress distribution from surface to the interior of titanium during shot peening are estimated firstly using finite element method. Then shot peening experiment is carried out on a commercially pure titanium (CP-Ti) plate, and the obtained surface microstructures is characterized by transmission electron microscopy (TEM). Combining theoretical simulations and experimental observations, the effect of strain rate on the strain accommodation mechanism and plastic deformation mode are discussed. It is concluded that the strain rate and stress achieve the highest at the top surface layer of CP-Ti, and the strain rate decrease dramatically from the surface to the interior. The strain rate at the top surface layer is up to 104 s-1, which leads to superplastic deformation of Ti. There is no mechanical twin in the surface layer, instead, deformation lamella and adiabatic shear bands are the dominating microstructures. By means of rotation recrystallization, those deformation bands evolve to nanocrystallines.


2017 ◽  
Vol 9 (2) ◽  
pp. 188-192 ◽  
Author(s):  
Kejian Li ◽  
Yinsheng He ◽  
Houyu Ma ◽  
Chao Fang ◽  
Jaeyong Kim ◽  
...  

2020 ◽  
Vol 28 ◽  
pp. 486-490
Author(s):  
Pramod Kumar ◽  
G.S. Mahobia ◽  
Kausik Chattopadhyay

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5364
Author(s):  
Stephan Lederer ◽  
Serkan Arat ◽  
Wolfram Fuerbeth

Wear resistant ceramic coatings were generated on novel commercially pure titanium grade 4+ alloys by the plasma electrolytic oxidation technique (PEO) in an aluminate and zirconia containing electrolyte. The coatings were obtained adopting a full regular two-level factorial design of experiments (DoE) varying the PEO process parameters current density, repetition rate and duty cycle. The generated coatings were characterized with respect to its wear resistance and mechanical properties by reciprocal ball-on-flat tests and nanoindentation measurements. Thickness, morphology and phase formation of the PEO coatings was analyzed by scanning electron microscopy (SEM/EDS) and X-ray diffraction. XRD results indicate the formation of crystalline aluminium titanate (TiAl2O5) as well as t-ZrO2 and alumina leading to an increase in hardness and wear resistance of the PEO coatings. Evaluation of the DoE’s parameter interaction shows that the main effects for generating wear resistant coatings are current density and repetition rate. In particular, the formation of mechanically stable and adhesive corundum and zirconia containing coatings with increasing current density and frequency turned out to be responsible for the improvement of the tribological properties. Overall, the PEO processing significantly improves the wear resistance of the CP titanium base alloy.


Sign in / Sign up

Export Citation Format

Share Document