Prediction of depth of cut for robotic belt grinding

2016 ◽  
Vol 91 (1-4) ◽  
pp. 699-708 ◽  
Author(s):  
Wei Wang ◽  
Fei Liu ◽  
Zhaoheng Liu ◽  
Chao Yun
2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Tie Zhang ◽  
Xiaohong Liang ◽  
Ye Yu ◽  
Bin Zhang

The angular variation of the joints may be large, and collision between workpieces and tools may occur in robotic grinding. Therefore, this paper proposes an optimal robotic grinding path search algorithm based on the recursive method. The algorithm is optimized by changing the position of the tool coordinate system on the belt wheel; thus, the pose of the robot during grinding is adjusted. First, the position adjustment formula of the tool coordinate system is proposed, and a coordinate plane is established to describe the grinding path of the robot based on the position adjustment formula. Second, the ordinate value of this coordinate plane is dispersed to obtain the search field of the optimal robotic grinding path search algorithm. Third, an optimal robotic grinding path search algorithm is proposed based on the recursive method and single-step search process. Finally, the algorithm is implemented on the V-REP platform. Robotic grinding paths for V-shaped workpieces and S-shaped workpieces are generated using this algorithm, and a grinding experiment is performed. The experimental results show that the robotic grinding paths generated by this algorithm can smoothly complete grinding operations and feature a smaller angular variation of the joint than other methods and no collision.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1635 ◽  
Author(s):  
Tie Zhang ◽  
Ye Yu ◽  
Yanbiao Zou

To improve the processing quality and efficiency of robotic belt grinding, an adaptive sliding-mode iterative constant-force control method for a 6-DOF robotic belt grinding platform is proposed based on a one-dimension force sensor. In the investigation, first, the relationship between the normal and the tangential forces of the grinding contact force is revealed, and a simplified grinding force mapping relationship is presented for the application to one-dimension force sensors. Next, the relationship between the deformation and the grinding depth during the grinding is discussed, and a deformation-based dynamic model describing robotic belt grinding is established. Then, aiming at an application scene of robot belt grinding, an adaptive iterative learning method is put forward, which is combined with sliding mode control to overcome the uncertainty of the grinding force and improve the stability of the control system. Finally, some experiments were carried out and the results show that, after ten times iterations, the grinding force fluctuation becomes less than 2N, the mean value, standard deviation and variance of the grinding force error’s absolute value all significantly decrease, and that the surface quality of the machined parts significantly improves. All these demonstrate that the proposed force control method is effective and that the proposed algorithm is fast in convergence and strong in adaptability.


2011 ◽  
Vol 15 ◽  
pp. 2762-2766 ◽  
Author(s):  
Dong Zhang ◽  
Chao Yun ◽  
Dezheng Song

2014 ◽  
Vol 18 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Shuihua Wu ◽  
Kazem Kazerounian ◽  
Zhongxue Gan ◽  
Yunquan Sun

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3978 ◽  
Author(s):  
Nelli Vladimirovna Syreyshchikova ◽  
Viktor Ivanovich Guzeev ◽  
Dmitrii Valerievich Ardashev ◽  
Danil Yurievich Pimenov ◽  
Karali Patra ◽  
...  

This article presents a methodology for designing belt grinding operations with grinding and lapping machines. It provides the results of a study on the machinability of various steels and alloys with belt grinding, which are then classified according to an indicator that we have developed. Namely, cast aluminum alloys, structural alloy steels, structural carbon steels, corrosion-resistant and heat-resistant stainless steels, and heat-resistant nickel alloys have been investigated. The machinability index is the ratio of the performance indicators of the grinding belt and the depth of cut to the indicators of grade 45 structural carbon steels (similar to steel AISI 1045) and similar steels and alloys. The performance indicators of the grinding belt are chosen from a set of calculated and estimated indicators. Experimentally determining the dependences of the performance indicators on the belt grinding modes and conditions, taking into account the established levels of machinability, allowed us to develop recommendations for designing belt grinding operations with grinding and lapping machines. The proposed methodology for designing belt grinding operations guarantees optimal performance and ensures that the necessary quality of the machinable surfaces is achieved. At the same time, it takes into account variable machining conditions, which change within specified limits.


Sign in / Sign up

Export Citation Format

Share Document