scholarly journals An Adaptive Sliding-Mode Iterative Constant-force Control Method for Robotic Belt Grinding Based on a One-Dimensional Force Sensor

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1635 ◽  
Author(s):  
Tie Zhang ◽  
Ye Yu ◽  
Yanbiao Zou

To improve the processing quality and efficiency of robotic belt grinding, an adaptive sliding-mode iterative constant-force control method for a 6-DOF robotic belt grinding platform is proposed based on a one-dimension force sensor. In the investigation, first, the relationship between the normal and the tangential forces of the grinding contact force is revealed, and a simplified grinding force mapping relationship is presented for the application to one-dimension force sensors. Next, the relationship between the deformation and the grinding depth during the grinding is discussed, and a deformation-based dynamic model describing robotic belt grinding is established. Then, aiming at an application scene of robot belt grinding, an adaptive iterative learning method is put forward, which is combined with sliding mode control to overcome the uncertainty of the grinding force and improve the stability of the control system. Finally, some experiments were carried out and the results show that, after ten times iterations, the grinding force fluctuation becomes less than 2N, the mean value, standard deviation and variance of the grinding force error’s absolute value all significantly decrease, and that the surface quality of the machined parts significantly improves. All these demonstrate that the proposed force control method is effective and that the proposed algorithm is fast in convergence and strong in adaptability.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Yufeng Zhao ◽  
Wenbin Ji ◽  
Jiaheng Mu ◽  
Fengbao Hu

Purpose This paper aims to present a control method to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A constant force control strategy combined by extended state observer (ESO) and backstepping control is proposed. ESO is used to estimate the total disturbance to improve the anti-interference and stability of the system and Backstepping control is used to improve the response speed of the system. Findings The simulation and grinding experimental results show that, compared with the proportional integral differential control and active disturbance rejection control, the designed controller can improve the dynamic response performance and anti-interference ability of the system and can quickly track the expected force and improve the grinding quality of the hub surface. Originality/value The main contribution of this paper lies in the proposed of a new constant force control strategy, which significantly improved the stability and precision of grinding force.


Author(s):  
Guohong Xie ◽  
Ji Zhao ◽  
Xin Wang ◽  
Huan Liu ◽  
Yan Mu ◽  
...  

In the abrasive belt grinding process, there are factors affecting the machining stability, efficiency, and quality. Based on the analysis of the grinding process, the normal force in the contact area between the abrasive belt and the workpiece is a major factor. By comparing constant force and non-constant force grinding, the results imply that keeping the grinding force constant will achieve desired material removal and better surface quality. The phenomenon of over- and under-cutting of the workpieces can also be avoided by a constant normal force. In this article, a controllable and flexible belt grinding mechanism accompanied with a mechanical decoupling control strategy is built and tested. Afterward, a detailed comparison is made between the traditional force-position coupling system and the proposed decoupling control system. The proposed control system suppresses the interference between the position and force control systems. The contact force is directly measured and controlled without detecting the position of other components in the tool system. The complexity of the control system is thereby reduced. Finally, several grinding experiments are carried out. The standard deviation and coefficient of variation of the measured normal force are kept within 0.25 and 0.02, respectively. The experiment results reveal that the mechanical decoupling system performs well in force control compared with the traditional force-position coupling system. In addition, the surface roughness Ra < 0.4 μm, the surface quality of the workpiece is improved significantly with the constant force controller.


2021 ◽  
Author(s):  
Wenhua Zhang ◽  
Shijie Dai ◽  
Yufeng Zhao ◽  
Jiaheng Mu ◽  
Tianrong Hu ◽  
...  

Abstract This paper presents a parallel control method based on the expanded state observer (ESO) for aero-engine blade robot polishing. Aiming to reduce the fluctuation of polishing force caused by environmental noise and modeling errors. First, calibrate six-dimensional force sensor according to the maximum acceleration of the end effector during the polishing process. Then, build the gravity compensation and zero drift compensation model. Besides, use this model to compensate measurement error of the six-dimensional force sensor. Finally, calculate the error between the expected polishing force and the actual feedback value and its derivative value. Use calculation results to design the control boundary layer. The polishing force controller is divided into two parallel control loops to design. When the switching value is in the control boundary layer. A nonlinear active disturbance rejection control (ADRC) loop is used. When the switching value is outside the control boundary layer. An ESO-based sliding mode control (SMC) loop is used. Simulation and experimental results show that the proposed parallel control method based on ESO has a fast response and high robustness compared with FuzzyPID, PID, and ADRC. It can effectively suppress the force fluctuation in the polishing process and significantly improve the surface processing quality of the aero-engine blade.


2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Tingting Ye ◽  
Jie Ling ◽  
Xi Kang ◽  
Zhao Feng ◽  
Xiaohui Xiao

Abstract The manipulating objects of the micron scale are easily damaged, hence the microgrippers, the key components in micro manipulating systems, demand precise force control, plus miniaturized size. Consequently, the constant force microgrippers, generally lack the ability to fit different sizes. To avoid the overload damage, apply multi-size microparts and simplify the control method, a novel two-stage compliant constant force microgripper is proposed in this paper. Based on the negative stiffness effect, this gripper is connected in parallel with a two-stage negative stiffness module and a positive stiffness module. Then, the elliptic integral method and the pseudo-rigid-body method are both employed to derive the kinetostatic and dynamic performances. Finally, the analytical results are validated. It is observed that two-stage constant forces of 1.33 N in 305.6 μm and 1.11 N in 330.8 μm are acquired.


2011 ◽  
Vol 403-408 ◽  
pp. 762-766
Author(s):  
Jia Ping Yu ◽  
Xin Wei ◽  
Zhuo Chen ◽  
Pei Yong Lin

According to the features of the self–rotating grinding, the real-time grinding force control system was designed. The Fuzzy-PID control method has been proved to be the most suitable control method and fulfill the system’s needs through the modeling, simulation and experiment of the system in this paper.


2021 ◽  
pp. 821-829
Author(s):  
MingJian Sun ◽  
Kai Guo ◽  
Jie Sun

2018 ◽  
Vol 120 ◽  
pp. 93-98 ◽  
Author(s):  
Dahu Zhu ◽  
Xiaohu Xu ◽  
Zeyuan Yang ◽  
Kejia Zhuang ◽  
Sijie Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document