Evaluation of cold wire addition effect on heat input and productivity of tandem submerged arc welding for low-carbon microalloyed steels

2017 ◽  
Vol 92 (1-4) ◽  
pp. 817-829 ◽  
Author(s):  
Mohsen Mohammadijoo ◽  
Laurie Collins ◽  
Hani Henein ◽  
Douglas G. Ivey
2011 ◽  
Vol 110-116 ◽  
pp. 3191-3198
Author(s):  
Sadegh Moeinifar

The high-strength low-alloy microalloyed steel was procured as a hot rolled plate with accelerated cooling. The Gleeble thermal simulated process involved heating the steel specimens to the peak temperature of 1400 °C, with constant cooling rates of 3.75 °C/s and 2 °C/s to room temperature. The four-wire tandem submerged arc welding process, with different heat input, was used to generate a welded microstructure. The martensite/austenite constituent appeared in the microstructure of the heat affected zone region for all the specimens along the prior-austenite grain boundaries and between bainitic ferrite laths. The blocky-like and stringer martensite/austenite morphology were observed in the heat affected zone regions. The martensite/austenite constituents were obtained by a combination of field emission scanning electron microscopes and image analysis software The Charpy absorbed energy of specimens was assessed using Charpy impact testing at-50 °C. Brittle particles, such as martensite/austenite constituent along the grain boundaries, can make an easy path for crack propagation. Similar crack initiation sites and growth mechanism were investigated for specimens welded with different heat input values.


2017 ◽  
Vol 48 (5) ◽  
pp. 2247-2259 ◽  
Author(s):  
Mohsen Mohammadijoo ◽  
Stephen Kenny ◽  
Laurie Collins ◽  
Hani Henein ◽  
Douglas G. Ivey

1987 ◽  
Vol 3 (02) ◽  
pp. 111-118
Author(s):  
John C. West

Steels with 50 ksi and up yield points usually acquire their strength from some form of heat treatment. Most of these steels, 11/2 in. thick and up, must be welded using sustained preheat and controlled interpass temperatures, plus controlled welding heat input of approximately 50 to 60 kJ/in. These two items can add as much as 50 percent to the cost of submerged-arc welding, and increases of up to 30 percent are common for manual welding when compared with lower-strength steels previously used. To reduce costs, a quenched and precipitation-hardened steel, ASTM A710 Grade A Class 3, with a high degree of weldability, was tested. This steel, which can be welded without sustained preheat and almost unlimited heat input, has been extensively tested in thicknesses from 21/4 through 6 in. Although this steel costs more than the usual quenched-and-tempered plates at these strength levels, reductions of 40 to 75 percent in welding labor costs are probable. In addition, sizeable material savings should be realized when these items are used in place of HY-80 and HY-100.


2020 ◽  
Vol 20 (5) ◽  
pp. 1454-1464
Author(s):  
Satoshi Yamada ◽  
Yuko Shimada ◽  
Takanori Ishida ◽  
Yuka Matsumoto ◽  
Jun Iyama ◽  
...  

Abstract Submerged arc welding, which is generally used for the corner joint of box-section columns, is a welding process with a high heat input. The influence on the strength and toughness of the heat-affected zone is an important concern, especially when used with a high-performance steel that may be more susceptible to heat input. The ductility of the welded corner joint is one of the important factors to ensure safety against external forces, such as during severe earthquakes. In this study, a series of material and cyclic loading tests of the corner joint comprising SA440C high-performance steel fabricated by submerged arc welding were conducted. The experimental results indicated that the welded corner joint comprising SA440C steel is ductile enough to dissipate input energy caused by the strong ground motion from an earthquake.


Sign in / Sign up

Export Citation Format

Share Document