Development of a novel type of elliptical vibration cutting approaches with varying phase difference

2018 ◽  
Vol 101 (9-12) ◽  
pp. 3107-3120
Author(s):  
Rongqi Wang ◽  
Xiaoqin Zhou ◽  
Guangwei Meng
1996 ◽  
Vol 62 (8) ◽  
pp. 1127-1131 ◽  
Author(s):  
Eiji SHAMOTO ◽  
Yoshiyuki MORIMOTO ◽  
Toshimichi MORIWAKI

2014 ◽  
Vol 490-491 ◽  
pp. 600-606
Author(s):  
Jie Qiong Lin ◽  
Jin Guo Han ◽  
Dan Jing ◽  
Xian Jing

Elliptical vibration cutting (EVC) process and three dimensional cutting surfaces are analyzed in this paper to understand the formation of surface topography. The model of EVC surface topography is established based on curved surface remove function under the assumption that the tool edge is sharp enough. And simulation analysis of surface topography is conducted with different feed offset ratios. Results indicate that RMS change with feed offset ratios λ. The range of RMS is larger when feed offset ratio ranges from both 0 to 0.4 and 0.6 to 1, while the range is smaller when feed offset ratio changes from 0.4 to 0.6. Whats more, RMS reaches the minimum when feed offset ratio is 0.5. The present research provides some references for reducing the height of vibration ripples and improving EVC surface quality.


Author(s):  
Sen Yin ◽  
Zhigang Dong ◽  
Yan Bao ◽  
Renke Kang ◽  
Wenhao Du ◽  
...  

Abstract Ultrasonic elliptical vibration cutting (UEVC) technique, as an advanced cutting method, has been successfully applied to machine difficult-to-cut materials for the last decade. In this study, the mechanism of the elliptical vibration locus caused by the “asymmetric structure” of the horn was analyzed theoretically firstly, and the corresponding relationship between the degree of asymmetry and the elliptical vibration locus was determined based on finite element method (FEM). Then an efficient single-excitation UEVC device with “asymmetric structure” was developed and optimized. The resonant frequency of the device was 40.8 kHz, and the amplitude reached 12.4 µm, which effectively broke the limitation of cutting speed in UEVC. Finally, the UEVC device's performance was tested, and the advantages in improving the tungsten alloy surface quality and reducing diamond cutting tool wear validated the technical capability and principle of the proposed device.


2018 ◽  
Vol 12 (4) ◽  
pp. 573-581 ◽  
Author(s):  
Hiroshi Saito ◽  
Hongjin Jung ◽  
Eiji Shamoto ◽  
Shinya Suganuma ◽  
Fumihiro Itoigawa ◽  
...  

Low-cost mirror surface machining of die steel is proposed in this research by applying elliptical vibration cutting with diamond-coated tools sharpened by pulse laser grinding (PLG). It is well known that conventional diamond cutting cannot be applied to die steel owing to rapid tool wear. Several attempts have been reported to prevent rapid tool wear, such as using ultrasonic elliptical vibration cutting. The ultrasonic elliptical vibration cutting developed by the authors to achieve mirror surface finish on die steel and prevent rapid wear is widely used in the industry. However, high-cost single-crystalline diamond tools that are finished using a time-consuming lapping process are required to obtain mirror surfaces. The authors, meanwhile, have recently developed the PLG process to efficiently sharpen the cutting edges of hard tool materials such as cubic boron nitride. Therefore, a practical mirror surface machining method for die steel is proposed in this research, namely elliptical vibration cutting with low-cost diamond-coated tools sharpened by the efficient PLG process. The results of the machining experiments confirmed that practical mirror surface machining of die steel can be achieved by the proposed method.


Sign in / Sign up

Export Citation Format

Share Document