An efficient method to predict the chatter stability of titanium alloy thin-walled workpieces during high-speed milling by considering varying dynamic parameters

2020 ◽  
Vol 106 (11-12) ◽  
pp. 5407-5420 ◽  
Author(s):  
Jilu Feng ◽  
Ning Hou ◽  
Zhao Jian ◽  
Zhili Sun ◽  
Jing Zhang
2021 ◽  
Author(s):  
Qimeng Liu ◽  
Jinkai Xu ◽  
Huadong Yu

Abstract Large-scale slender beam structures with weak stiffness are widely used in the aviation field. There will be a great deformation problem in machining because the overall stiffness of slender beam parts is lower. Firstly, the cutting mechanism and stability theory of the Ti6Al4V material are analyzed, and then the auxiliary support is carried out according to the machining characteristics of the slender beam structure. The feasibility of the deformation suppression measures for the slender beam is verified by experiments. The experimental analysis shows that on the basis of fulcrum auxiliary support, the filling of paraffin melt material is capable of increasing the damping of the whole system, improving the overall stiffness of the machining system, and inhibiting the chatter effect of machining. This method is effective to greatly improve the accuracy and efficiency during machining of slender beam parts. On the premise of the method of processing support with the combination of fulcrum and paraffin, if the tool wear is effectively controlled, the high precision machining of large-scale slender beams can be realized effectively, and the machining deformation of slender beams can be reduced. Although high speed milling has excellent machining effect on the machining accuracy of titanium alloy materials, severe tool wear is observed during high-speed milling of titanium alloy materials. Therefore, high-speed milling of titanium alloy slender beam is suitable to be carried out in the finishing process, which can effectively control tool wear and improve the machining accuracy of parts. Finally, the process verification of typical weak stiffness slender beam skeleton parts is carried out. Through the theoretical and technical support of the experimental scheme, the machining of large-scale slender beam structure parts with weak stiffness is realized.


2019 ◽  
Author(s):  
Muhammad Firdaus Zakaria ◽  
Mohd Azlan Suhaimi ◽  
Safian Sharif ◽  
Gi-Dong Yang ◽  
Mohd Sallehuddin Shaharum ◽  
...  

2009 ◽  
Vol 69-70 ◽  
pp. 428-432 ◽  
Author(s):  
Qing Hua Song ◽  
Yi Wan ◽  
Shui Qing Yu ◽  
Xing Ai ◽  
J.Y. Pang

A method for predicting the stability of thin-walled workpiece milling process is described. The proposed approach takes into account the dynamic characteristics of workpiece changing with tool positions. A dedicated thin-walled workpiece representative of a typical industrial application is designed and modeled by finite element method (FEM). The workpiece frequency response function (FRF) depending on tool positions is obtained. A specific 3D stability chart (SC) for different spindle speeds and different tool positions is then elaborated by scanning the dynamic properties of workpiece along the machined direction throughout the machining process. The dynamic optimization of cutting parameters for increasing the chatter free material removal rate and surface finish is presented through considering the chatter vibration and forced vibration. The investigations are compared and verified by high speed milling experiments with flexible workpiece.


2010 ◽  
Vol 97-101 ◽  
pp. 1849-1852
Author(s):  
Tong Yue Wang ◽  
Ning He ◽  
Liang Li

Thin-walled structure is easy to vibrate in machining. The dynamic milling model of thin-walled workpiece is analyzed based on the analysis of degrees in two perpendicular directions of machine tool-workpiece system. In high speed milling of 2A12 aluminum alloy, the compensation method based on the modification of inertia effect is proposed and accurate cutting force coefficients are obtained. The machining system is divided into “spindle-cutter” and “workpiece-fixture” two sub-systems and the modal parameters of two sub-systems are acquired via modal analysis experiments. Finally, the stability lobes for high speed milling of 2A12 thin-walled workpiece are obtained by the use of these parameters. The results are verified against cutting tests.


Sign in / Sign up

Export Citation Format

Share Document