Analysis on specific cutting energy in micro milling of bulk metallic glass

2020 ◽  
Vol 108 (1-2) ◽  
pp. 245-261 ◽  
Author(s):  
Debajyoti Ray ◽  
Asit Baran Puri ◽  
Naga Hanumaiah ◽  
Saurav Halder
Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 86 ◽  
Author(s):  
Tao Wang ◽  
Xiaoyu Wu ◽  
Guoqing Zhang ◽  
Bin Xu ◽  
Yinghua Chen ◽  
...  

The micro machinability of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass (BMG) was investigated by micro milling with coated cemented carbide tools. The corresponding micro milling tests on Al6061 were conducted for comparison. The results showed that the tool was still in stable wear stage after milling 300 mm, and the surface roughness Ra could be maintained around 0.06 μm. The tool experienced only slight chipping and rubbing wear after milling the BMG, while a built-up edge and the coating peeling off occurred severely when milling Al6061. The influence of rotation speed on surface roughness was insignificant, while surface roughness decreased with the reduction of feed rate, and then increased dramatically when the feed rate was below 2 μm/tooth. The surface roughness increased gradually with the axial depth of cut (DOC). Milling force decreased slightly with the increase in rotation speed, while it increased with the increase in axial DOC, and the size effect on milling force occurred when the feed rate decreased below 1 μm/tooth. The results of X-ray diffraction (XRD) showed that all milled surfaces were still dominated by an amorphous structure. This study could pave a solid foundation for structural and functional applications.


2019 ◽  
Vol 18 (01) ◽  
pp. 113-132
Author(s):  
Debajyoti Ray ◽  
Asit Baran Puri ◽  
Nagahanumaiah

Precision micro-component fabrication demands suitable manufacturing processes that ensure making of parts with good form and finish. Mechanical micro milling represents a flexible and powerful process that exhibits enhanced capability to create micro features. Bulk metallic glass (BMG) represents a young class of amorphous alloy material with superior mechanical and physical properties and finds appreciable micro scale applications like biomedical devices and implants, micro parts for sport items and various other micro- components. In the present work, an attempt has been made to analyze the influence of the cutting parameters like spindle speed, feed per tooth and axial depth of cut on the machinability of BMG, in mechanical micro-milling process. The micro-milling process performances have been evaluated concerning to cutting forces and surface roughness generated, by making full slots on the workpiece with solid carbide end mill cutters. The paper presents micro-machining results for bulk metallic glass machined with commercial micro-milling tool at low cutting velocity regime. Response surface methodology (RSM) has been employed for process modeling and subsequent analysis to study the influence of the combination of cutting parameters on responses within the selected domain of cutting parameters. It has been found that the effect of axial depth of cut on the cutting force components is remarkably significant. Cutting force components increases with the increase in axial depth of cut and decreases with increase in spindle speed. At low feed rate, cutting force in the feed direction (Fx, i.e., cutting force along x-direction) increases with a decrease in feed rate. This increase of force could be due to the possible ploughing effect. A similar pattern of variation has been observed with cutting force component in cross-feed direction (Fy) also. It has been found that effect of feed per tooth on the roughness parameter Ra is remarkably significant. Surface roughness increases with feed per tooth. Axial depth of cut does not contribute much to the surface roughness. Surface roughness decrease with the increase of spindle speed.


2019 ◽  
Vol 104 (1-4) ◽  
pp. 585-598 ◽  
Author(s):  
Yang Yao ◽  
Hongtao Zhu ◽  
Chuanzhen Huang ◽  
Jun Wang ◽  
Pu Zhang ◽  
...  

2016 ◽  
Author(s):  
Zi Jie Choong ◽  
Dehong Huo ◽  
Patrick Degenaar ◽  
Anthony O’Neill

This paper presents the research on the machinability studies in micro-milling of (001) silicon wafer. Excessive generation of undesirable surface and subsurface damages such as surface edge chipping often occurs when machined at depth of cut of several hundreds of microns. Ideal machining strategy to reduce the generation of edge chipping is required. Investigations on the effect of machining conditions on the cutting performances and size effect on the specific cutting energy in silicon micro-milling were conducted. These investigations provide understandings on the behavior of cutting mechanism during machining and helps to identify suitable machining parameters for fracture free machining using diamond end mills. Full slot milling were performed along <100> and <110> directions on a (001) surface wafer under various machining conditions. Results show that machined surfaces along <100> were of better quality than those along <110> and is in agreement with previous studies. Furthermore, good machining quality was achieved when machined at depth of cut of 10 μm or feed per tooth of 0.075 μm/tooth, regardless of the machining conditions. In addition, investigation for the size effect on specific cutting energy also shows that brittle mode machining begins when feed per tooth increases beyond 0.4 μm/tooth.


Sign in / Sign up

Export Citation Format

Share Document