scholarly journals Correction to: Mathematical modeling and experimental studies on axial drilling load for rotary ultrasonic drilling of C/SiC composites

2020 ◽  
Vol 109 (3-4) ◽  
pp. 1205-1205
Author(s):  
Shafiul Islam ◽  
Songmei Yuan ◽  
Zhen Li
2021 ◽  
Vol 1037 ◽  
pp. 369-376
Author(s):  
Maxim Ilyushkin ◽  
Kirill Savelev ◽  
Oleg Krupennikov ◽  
Evgeniy S. Kiselev

The paper presents the results of numerical experimental studies of cutting titanium blanks using mathematical modeling programs, which make it possible to completely repeat technological processes in a computer (digital twin). The LS-DYNA product was used as a program to simulate the process of stock removal from titanium blank. It has been established that the use of this method adequately describes the cutting processes, including with the introduction of the energy of an ultrasonic field into the processing zone, can significantly reduce the duration of experimental research and evaluate the influence of the elements of the cutting mode and design parameters of the tool on the thermal power aspects of the formation of new surfaces of machine parts.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1059 ◽  
Author(s):  
Hisham Alkhalefah

Alumina is an advanced ceramic with applications in dental and medical sciences. Since ceramics are hard and brittle, their conventional machining is expensive, arduous, and time-consuming. As rotary ultrasonic machining is among the most adequate and proficient processing techniques for brittle materials like ceramics. Therefore, in this study, rotary ultrasonic drilling (RUD) has been utilized to drill holes on alumina ceramic (Al2O3). This study investigates the effect of key RUD process variables, namely vibration frequency, vibration amplitude, spindle speed, and feed rate on the dimensional accuracy of the drilled holes. A four-variable three-level central composite design (thirty experiments on three sample plates) is utilized to examine the comparative significance of different RUD process variables. The multi-objective genetic algorithm is employed to determine the optimal parametric conditions. The findings revealed that material removal rates depend on feed rate, while the cylindricity of the holes is mostly controlled by the speed and feed rate of the spindles. The optimal parametric combination attained for drilling quality holes is speed = 4000 rpm, feed rate = 1.5 (mm/min), amplitude = 20 (µm), and frequency = 23 (kHz). The validation tests were also conducted to confirm the quality of drilled holes at the optimized process parameters.


Sign in / Sign up

Export Citation Format

Share Document