cooperative adsorption
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rong Ye ◽  
Ming Zhao ◽  
Xianwen Mao ◽  
Zhaohong Wang ◽  
Diego A. Garzón ◽  
...  

AbstractAdsorption plays vital roles in many processes including catalysis, sensing, and nanomaterials design. However, quantifying molecular adsorption, especially at the nanoscale, is challenging, hindering the exploration of its utilization on nanomaterials that possess heterogeneity across different length scales. Here we map the adsorption of nonfluorescent small molecule/ion and polymer ligands on gold nanoparticles of various morphologies in situ under ambient solution conditions, in which these ligands are critical for the particles’ physiochemical properties. We differentiate at nanometer resolution their adsorption affinities among different sites on the same nanoparticle and uncover positive/negative adsorption cooperativity, both essential for understanding adsorbate-surface interactions. Considering the surface density of adsorbed ligands, we further discover crossover behaviors of ligand adsorption between different particle facets, leading to a strategy and its implementation in facet-controlled synthesis of colloidal metal nanoparticles by merely tuning the concentration of a single ligand.


2021 ◽  
Author(s):  
Yuxuan Lu ◽  
Tianyang Liu ◽  
Chunming Yang ◽  
Chung-Li Dong ◽  
Yucheng Huang ◽  
...  

Abstract The electrooxidation of 5-hydroxymethylfurfural (HMF) offers a promising green route to attain high-value chemicals from biomass. The HMF electrooxidation reaction (HMFOR) is a complicated process involving the combined adsorption and coupling of organic molecules and OH- on the electrode surface. An in-depth understanding of these cooperative adsorption behaviors and reaction processes is fundamentally essential. Herein, the adsorption behavior of HMF and OH-, and the role of oxygen vacancy on Co3O4 are initially unraveled. Correspondingly, instead of the competitive adsorption of OH- and HMF on the metal sites, it is observed that the OH- could fill into oxygen vacancy (Vo) before couple with organic molecules through the lattice oxygen oxidation reaction process, which could accelerate the rate-determining step of the dehydrogenation of 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) and enhance the overall conversion of HMF on Vo-Co3O4. This work sheds a depth insight on the catalytic mechanism of oxygen vacancy, which benefits designing a novel strategy to modulate the multi-molecules combined adsorption behaviors.


2021 ◽  
pp. 1404-1414
Author(s):  
Asep Bayu Dani Nandiyanto ◽  
Siti Nur Hofifah ◽  
Hilma Tahsilul Inayah ◽  
Silmi Ridwan Putri ◽  
Siti Saffanah Apriliani ◽  
...  

This study aims to evaluate the adsorption isotherm of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds for adsorbing curcumin (as a model of dye). The results were derived and compared using the kinetics approach based on several standard adsorption isotherm models, namely the Langmuir, Temkin, Freundlich, and Dubinin-Radushkevich models. The second aim is to evaluate the effects of carbon particle size (from 100 to 1000 mm) on the adsorption characteristics. The experimental results showed that the adsorption on the surface of carbon microparticles occurred in monolayer with a physical phenomenon. This is because the active areas are located only on the outer surface of carbon and no surface structure in the carbon is available. This is confirmed by the fact that the produced carbon has less porosity and the pores themselves are mostly produced from the release of inorganic contents during carbon synthesis, while the amount of inorganic content is very less. The confirmation of the adsorption profile was also achieved by testing various sizes of carbon microparticles. Smaller particles have direct impacts on the improvement of adsorption capacity, which is due to the existence of a larger surface area, a larger number of adsorption sites, and additional cooperative adsorption, i.e. adsorbate-adsorbate interaction. Understanding the adsorption phenomena occurring on carbon particles is useful for further developments and applications, such as those of catalysts and adsorbents, especially concerning the production of carbon materials from organic waste.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Gan-Yu Chen ◽  
Yi-Bin Sun ◽  
Pei-Chen Shi ◽  
Tao Liu ◽  
Zhi-Hao Li ◽  
...  

AbstractInterfacial host–guest complexation offers a versatile way to functionalize nanomaterials. However, the complicated interfacial environment and trace amounts of components present at the interface make the study of interfacial complexation very difficult. Herein, taking the advantages of near-single-molecule level sensitivity and molecular fingerprint of surface-enhanced Raman spectroscopy (SERS), we reveal that a cooperative effect between cucurbit[7]uril (CB[7]) and methyl viologen (MV2+2I−) in aggregating Au NPs originates from the cooperative adsorption of halide counter anions I−, MV2+, and CB[7] on Au NPs surface. Moreover, similar SERS peak shifts in the control experiments using CB[n]s but with smaller cavity sizes suggested the occurrence of the same guest complexations among CB[5], CB[6], and CB[7] with MV2+. Hence, an unconventional exclusive complexation model is proposed between CB[7] and MV2+ on the surface of Au NPs, distinct from the well-known 1:1 inclusion complexation model in aqueous solutions. In summary, new insights into the fundamental understanding of host–guest interactions at nanostructured interfaces were obtained by SERS, which might be useful for applications related to host–guest chemistry in engineered nanomaterials.


2021 ◽  
Author(s):  
Han Chen ◽  
Omar Abdelrahman

<p>A kinetic investigation of the vapor phase Hofmann elimination of tert-butylamine over H-ZSM-5 reveals a carbocation mediated E1-like mechanism, where isobutene and ammonia are exclusively produced over Brønsted acid sites. Hofmann elimination kinetics are found to be insensitive to Al content or siting, varying only with alkylamine carbocation stability (r<sub>tertiary</sub> > r<sub>secondary</sub> > r<sub>primary</sub>). Under conditions of complete tert-butylamine surface coverage, experimentally measurable apparent kinetics are directly equivalent to the intrinsic kinetics of the rate determining unimolecular surface elimination. The direct measurement of elementary step kinetics served as a water-free reactive probe, providing a direct measurement of the impact of water on solid Brønsted acid catalyzed chemistries at a microscopic level. Over a range of temperatures (453‒513 K) and tert-butylamine partial pressures (6.8×10<sup>-2</sup>‒6.8 kPa), water reversibly inhibits the rate of Hofmann elimination. Despite expected changes in aluminosilicate hydrophobicity, the water-induced inhibition is found to be insensitive to Al content, demonstrated to be due to one water molecule per Brønsted acid site. Regardless of the significant reduction in the rate of Hofmann elimination, kinetic interrogations and operando spectroscopic measurements reveal that the coverage of TBA adsorbed on H-ZSM-5 is unaltered in the presence of water. Cooperative adsorption between the tert-butylammonium surface reactant and water adsorbed on a neighboring framework oxygen is proposed to be responsible for the observed rate inhibition, the surface dynamics of which is quantitatively captured through kinetic modeling of experimental rate measurements.</p>


Sign in / Sign up

Export Citation Format

Share Document