scholarly journals Vacuum laser powder bed fusion—track consolidation, powder denudation, and future potential

2020 ◽  
Vol 110 (11-12) ◽  
pp. 3339-3346
Author(s):  
L. Kaserer ◽  
S. Bergmueller ◽  
J. Braun ◽  
G. Leichtfried

Abstract Defects in parts processed by laser powder bed fusion (LPBF) are often triggered by laser/plasma plume interference and spattering. The implementation of a LPBF process in vacuum has been suggested to possibly reduce these effects. Within this study, the effects of process pressure variations between 1 mbar and atmospheric pressure on the generation of single tracks and on the surrounding layer of loose powder particles were studied for CP titanium grade 2 and the Maraging steel 1.2709. Below 10 mbar no single tracks could be generated and the powder layer adjacent to the track was effectively denuded. It was found that the essential mechanism for incorporating powder into the melt pool begins to work at process pressures above 10 mbar and its effectiveness increases with increasing pressure. The amount of powder incorporated into the melt pool depends on the material and the scanning conditions. With identical scanning conditions, this amount of powder is significantly larger for titanium than for steel. For process pressures above 200 mbar, no significant change in the amount of spattering could be found. In this pressure range improved process stability could be possible due to a reduced laser/plasma interaction and an increased laser penetration depth.

2020 ◽  
Vol 26 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Tobias Kolb ◽  
Reza Elahi ◽  
Jan Seeger ◽  
Mathews Soris ◽  
Christian Scheitler ◽  
...  

Purpose The purpose of this paper is to analyse the signal dependency of the camera-based coaxial monitoring system QMMeltpool 3D (Concept Laser GmbH, Lichtenfels, Germany) for laser powder bed fusion (LPBF) under the variation of process parameters, position, direction and layer thickness to determine the capability of the system. Because such and similar monitoring systems are designed and presented for quality assurance in series production, it is important to present the dominant signal influences and limitations. Design/methodology/approach Hardware of the commercially available coaxial monitoring QMMeltpool 3D is used to investigate the thermal emission of the interaction zone during LPBF. The raw images of the camera are analysed by means of image processing to bypass the software of QMMeltpool 3D and to gain a high level of signal understanding. Laser power, scan speed, laser spot diameter and powder layer thickness were varied for single-melt tracks to determine the influence of a parameter variation on the measured sensory signals. The effects of the scan direction and position were also analysed in detail. The influence of surface roughness on the detected sensory signals was simulated by a machined substrate plate. Findings Parameter variations are confirmed to be detectable. Because of strong directional and positional dependencies of the melt-pool monitoring signal a calibration algorithm is necessary. A decreasing signal is detected for increasing layer thickness. Surface roughness is identified as a dominating factor with major influence on the melt-pool monitoring signal exceeding other process flaws. Research limitations/implications This work was performed with the hardware of a commercially available QMMeltpool 3D system of an LPBF machine M2 of the company Concept Laser GmbH. The results are relevant for all melt-pool monitoring research activities connected to LPBF, as well as for end users and serial production. Originality/value Surface roughness has not yet been revealed as being one of the most important origins for signal deviations in coaxial melt-pool monitoring. To the best of the authors’ knowledge, the direct comparison of influences because of parameters and environment has not been published to this extent. The detection, evaluation and remelting of surface roughness constitute a plausible workflow for closed-loop control in LPBF.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3284
Author(s):  
Asif Ur Rehman ◽  
Muhammad Arif Mahmood ◽  
Fatih Pitir ◽  
Metin Uymaz Salamci ◽  
Andrei C. Popescu ◽  
...  

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.


Author(s):  
Bo Cheng ◽  
Brandon Lane ◽  
Justin Whiting ◽  
Kevin Chou

Powder bed metal additive manufacturing (AM) utilizes a high-energy heat source scanning at the surface of a powder layer in a pre-defined area to be melted and solidified to fabricate parts layer by layer. It is known that powder bed metal AM is primarily a thermal process and further, heat conduction is the dominant heat transfer mode in the process. Hence, understanding the powder bed thermal conductivity is crucial to process temperature predictions, because powder thermal conductivity could be substantially different from its solid counterpart. On the other hand, measuring the powder thermal conductivity is a challenging task. The objective of this study is to investigate the powder thermal conductivity using a method that combines a thermal diffusivity measurement technique and a numerical heat transfer model. In the experimental aspect, disk-shaped samples, with powder inside, made by a laser powder bed fusion (LPBF) system, are measured using a laser flash system to obtain the thermal diffusivity and the normalized temperature history during testing. In parallel, a finite element model is developed to simulate the transient heat transfer of the laser flash process. The numerical model was first validated using reference material testing. Then, the model is extended to incorporate powder enclosed in an LPBF sample with thermal properties to be determined using an inverse method to approximate the simulation results to the thermal data from the experiments. In order to include the powder particles’ contribution in the measurement, an improved model geometry, which improves the contact condition between powder particles and the sample solid shell, has been tested. A multi-point optimization inverse heat transfer method is used to calculate the powder thermal conductivity. From this study, the thermal conductivity of a nickel alloy 625 powder in powder bed conditions is estimated to be 1.01 W/m·K at 500 °C.


Author(s):  
Santosh Rauniyar ◽  
Kevin Chou

Abstract Parts are built in a layer-by-layer fashion in the laser powder bed fusion process. Each layer of scan in the parts is defined by a scan strategy that consists of many small patches and scans. The scan length of those multiple scans is not always long enough to have reached a quasi-steady state of the melt pool. The length at which it achieves a steady state is different for different process parameters. The available literature related to the melt pool considers the melt pool has already achieved a steady state, which holds true to a large extent. However, there is always a transient state of melt pool with different characteristics compared to the quasi-steady state. The transient state of the melt pool is particularly significant for small features and thin walls. This paper explores the cross-section and width of the melt track in the transient state. Single-tracks are deposited on semi-cylindrical samples with Ti-6Al-4V powder particles for three levels of power and speed combinations. The single tracks are built at a certain height from the base plate instead of on the build plate to include the effect of the powder particles. The experiment includes single tracks of four scan lengths i.e. 0.25, 0.5, 1 and 2 mm. Once the parts are built and removed from the build plate, White light interferometer is used to capture the melt track information and data processing is done in Matlab™. The results show that the transient length is directly proportional to the laser power and inversely proportional to the scan speed. The highest transient length value is obtained for the highest power of 195 W and lowest scan speed of 50 mm/s.


Author(s):  
Bo Cheng ◽  
Brandon Lane ◽  
Justin Whiting ◽  
Kevin Chou

Powder bed metal additive manufacturing (AM) utilizes a high-energy heat source scanning at the surface of a powder layer in a predefined area to be melted and solidified to fabricate parts layer by layer. It is known that powder bed metal AM is primarily a thermal process, and further, heat conduction is the dominant heat transfer mode in the process. Hence, understanding the powder bed thermal conductivity is crucial to process temperature predictions, because powder thermal conductivity could be substantially different from its solid counterpart. On the other hand, measuring the powder thermal conductivity is a challenging task. The objective of this study is to investigate the powder thermal conductivity using a method that combines a thermal diffusivity measurement technique and a numerical heat transfer model. In the experimental aspect, disk-shaped samples, with powder inside, made by a laser powder bed fusion (LPBF) system, are measured using a laser flash system to obtain the thermal diffusivity and the normalized temperature history during testing. In parallel, a finite element (FE) model is developed to simulate the transient heat transfer of the laser flash process. The numerical model was first validated using reference material testing. Then, the model is extended to incorporate powder enclosed in an LPBF sample with thermal properties to be determined using an inverse method to approximate the simulation results to the thermal data from the experiments. In order to include the powder particles' contribution in the measurement, an improved model geometry, which improves the contact condition between powder particles and the sample solid shell, has been tested. A multipoint optimization inverse heat transfer method is used to calculate the powder thermal conductivity. From this study, the thermal conductivity of a nickel alloy 625 powder in powder bed conditions is estimated to be 1.01 W/m K at 500 °C.


2019 ◽  
Vol 3 (1) ◽  
pp. 21 ◽  
Author(s):  
Morgan Letenneur ◽  
Alena Kreitcberg ◽  
Vladimir Brailovski

A simplified analytical model of the laser powder bed fusion (LPBF) process was used to develop a novel density prediction approach that can be adapted for any given powder feedstock and LPBF system. First, calibration coupons were built using IN625, Ti64 and Fe powders and a specific LPBF system. These coupons were manufactured using the predetermined ranges of laser power, scanning speed, hatching space, and layer thickness, and their densities were measured using conventional material characterization techniques. Next, a simplified melt pool model was used to calculate the melt pool dimensions for the selected sets of printing parameters. Both sets of data were then combined to predict the density of printed parts. This approach was additionally validated using the literature data on AlSi10Mg and 316L alloys, thus demonstrating that it can reliably be used to optimize the laser powder bed metal fusion process.


Author(s):  
Yong Ren ◽  
Qian Wang ◽  
Panagiotis (Pan) Michaleris

Abstract Laser powder bed fusion (L-PBF) additive manufacturing (AM) is one type of metal-based AM process that is capable of producing high-value complex components with a fine geometric resolution. As melt-pool characteristics such as melt-pool size and dimensions are highly correlated with porosity and defects in the fabricated parts, it is crucial to predict how process parameters would affect the melt-pool size and dimensions during the build process to ensure the build quality. This paper presents a two-level machine learning (ML) model to predict the melt-pool size during the scanning of a multi-track build. To account for the effect of thermal history on melt-pool size, a so-called (pre-scan) initial temperature is predicted at the lower-level of the modeling architecture, and then used as a physics-informed input feature at the upper-level for the prediction of melt-pool size. Simulated data sets generated from the Autodesk's Netfabb Simulation are used for model training and validation. Through numerical simulations, the proposed two-level ML model has demonstrated a high prediction performance and its prediction accuracy improves significantly compared to a naive one-level ML without using the initial temperature as an input feature.


Sign in / Sign up

Export Citation Format

Share Document